我有一个示例数据集,该数据集比我的实际数据集小得多,它实际上是一个文本文件,我想将其作为熊猫表读取并对其进行处理:
import pandas as pd
d = {
'one': ['title1', 'R2G', 'title2', 'K5G', 'title2','R14G', 'title2','R2T','title3', 'K10C', 'title4', 'W7C', 'title4', 'R2G', 'title5', 'K8C']
}
df = pd.DataFrame(d)
Run Code Online (Sandbox Code Playgroud)
示例数据集如下所示:
df
Out[20]:
one
0 title1
1 R2G
2 title2
3 K5G
4 title2
5 R14G
6 title2
7 R2T
8 title3
9 K10C
10 title4
11 W7C
12 title4
13 R2G
14 title5
15 K8C
Run Code Online (Sandbox Code Playgroud)
我添加了第二列,称为“值”:
df.insert(1,'value','')
df
Out[22]:
one value
0 title1
1 R2G
2 title2
3 K5G
4 title2
5 R14G
6 title2
7 R2T
8 title3
9 K10C
10 title4
11 W7C
12 title4
13 R2G
14 title5
15 K8C
Run Code Online (Sandbox Code Playgroud)
我想首先将其他所有行移至“值”列:
one value
0 title1 R2G
1 title2 K5G
2 title2 R14G
3 title2 R2T
4 title3 K10C
5 title4 W7C
6 title4 R2G
7 title5 K8C
Run Code Online (Sandbox Code Playgroud)
我想,然后按标题名称,因为有可能是相同的标题超过1点的值:
one value
0 title1 R2G
1 title2 K5G, R14G, R2T
2 title3 K10C
3 title4 W7C , R2G
4 title5 K8C
Run Code Online (Sandbox Code Playgroud)
EdC*_*ica 11
通过使用iloc和步骤 arg对列进行切片来构造一个新的 df :
In [185]:
new_df = pd.DataFrame({'one':df['one'].iloc[::2].values, 'value':df['one'].iloc[1::2].values})
new_df
Out[185]:
one value
0 title1 R2G
1 title2 K5G
2 title2 R14G
3 title2 R2T
4 title3 K10C
5 title4 W7C
6 title4 R2G
7 title5 K8C
Run Code Online (Sandbox Code Playgroud)
然后groupby,您可以在 'one' 上并lambda在 'value' 列和仅join值上应用 a :
In [188]:
new_df.groupby('one')['value'].apply(','.join).reset_index()
Out[188]:
one value
0 title1 R2G
1 title2 K5G,R14G,R2T
2 title3 K10C
3 title4 W7C,R2G
4 title5 K8C
Run Code Online (Sandbox Code Playgroud)
另外,您可以通过将值组传递到列表中来重塑和聚合。
import pandas as pd
d = {
'one': ['title1', 'R2G', 'title2', 'K5G', 'title2','R14G', 'title2','R2T','title3', 'K10C', 'title4', 'W7C', 'title4', 'R2G', 'title5', 'K8C']
}
df = pd.DataFrame(d)
# because you have simple alternating pattern, you can just reshape
df = pd.DataFrame(df.values.reshape(-1, 2), columns = ['one', 'value'])
# groupby on value and aggregate by joining a string
df = df.groupby('one')['value'].apply(', '.join).reset_index()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2374 次 |
| 最近记录: |