che*_*ens 8 k-means apache-spark pyspark pyspark-sql apache-spark-mllib
当我尝试将df2提供给kmeans时,我收到以下错误
clusters = KMeans.train(df2, 10, maxIterations=30,
runs=10, initializationMode="random")
Run Code Online (Sandbox Code Playgroud)
我得到的错误:
Cannot convert type <class 'pyspark.sql.types.Row'> into Vector
Run Code Online (Sandbox Code Playgroud)
df2是一个如下创建的数据框:
df = sqlContext.read.json("data/ALS3.json")
df2 = df.select('latitude','longitude')
df2.show()
latitude| longitude|
60.1643075| 24.9460844|
60.4686748| 22.2774728|
Run Code Online (Sandbox Code Playgroud)
如何将这两列转换为Vector并将其提供给KMeans?
Alb*_*nto 11
问题是您错过了文档的示例,并且很明显该方法train需要DataFrame具有Vectoras功能.
要修改当前数据的结构,可以使用VectorAssembler.在你的情况下,它可能是这样的:
from pyspark.sql.functions import *
vectorAssembler = VectorAssembler(inputCols=["latitude", "longitude"],
outputCol="features")
# For your special case that has string instead of doubles you should cast them first.
expr = [col(c).cast("Double").alias(c)
for c in vectorAssembler.getInputCols()]
df2 = df2.select(*expr)
df = vectorAssembler.transform(df2)
Run Code Online (Sandbox Code Playgroud)
此外,您还应该features使用MinMaxScaler类来规范化以获得更好的结果.
为了实现这一目的,MLLib首先需要使用map函数,将所有string值转换Double为DenseVector并将它们合并在一起.
rdd = df2.map(lambda data: Vectors.dense([float(c) for c in data]))
Run Code Online (Sandbox Code Playgroud)
在此之后,您可以使用变量训练MLlib的KMeans模型rdd.
我让PySpark 2.3.1在DataFrame上执行KMeans,如下所示:
feat_cols = ['latitude','longitude']`
Run Code Online (Sandbox Code Playgroud)
expr = [col(c).cast("Double").alias(c) for c in feat_cols]
df2 = df2.select(*expr)
Run Code Online (Sandbox Code Playgroud)
mllib.linalg.Vectors:from pyspark.ml.feature import VectorAssembler
assembler = VectorAssembler(inputCols=feat_cols, outputCol="features")
df3 = assembler.transform(df2).select('features')
Run Code Online (Sandbox Code Playgroud)
from pyspark.ml.feature import StandardScaler
scaler = StandardScaler(
inputCol="features",
outputCol="scaledFeatures",
withStd=True,
withMean=False)
scalerModel = scaler.fit(df3)
df4 = scalerModel.transform(df3).drop('features')\
.withColumnRenamed('scaledFeatures', 'features')
Run Code Online (Sandbox Code Playgroud)
from pyspark.mllib.linalg import Vectors
data5 = df4.rdd.map(lambda row: Vectors.dense([x for x in row['features']]))
Run Code Online (Sandbox Code Playgroud)
from pyspark.mllib.clustering import KMeans
model = KMeans.train(data5, k=3, maxIterations=10)
Run Code Online (Sandbox Code Playgroud)
prediction = model.predict(p)
Run Code Online (Sandbox Code Playgroud)