我编写了一个生成子集子集的函数。当我以下列方式使用时,它导致堆栈溢出subsets [1..]
。当涉及到“正常”(非懒惰)语言时,这是“正常”行为。现在,我想改进我的功能,使其变得懒惰。
PS我不理解懒惰(我试图理解它)所以也许我的问题对你来说很奇怪 - 请解释一下。:)
PS 2 请随意谈谈我在 Haskell 中的残疾情况;)
subsets :: [a] -> [[a]]
subsets (x:xs) = (map (\ e -> x:e) (subsets xs)) ++ (subsets xs)
subsets [] = [[]]
Run Code Online (Sandbox Code Playgroud)
该功能有两个问题。首先,它递归了两次,这使得它比必要的效率低得多(如果我们忽略结果的指数数量......),因为每次都为所有重叠子集重新计算每个子树;这可以let
通过将递归调用设为相同值来解决:
subsets' :: [a] -> [[a]]
subsets' [] = [[]]
subsets' (x:xs) = let s = subsets' xs
in map (x:) s ++ s
Run Code Online (Sandbox Code Playgroud)
这已经可以让你length $ subsets' [1..25]
在几秒钟内计算出来,而length $ subsets [1..25]
需要......好吧,我没有等;)
另一个问题是,对于您的版本,当您给它一个无限列表时,它将首先在该列表的无限尾部递归。为了以有意义的方式生成所有有限子集,我们需要确保两件事:首先,我们必须从较小的集合构建每个集合(以确保终止),其次,我们应该确保一个公平的顺序(即,不生成[[1], [2], ...]
首先列出,永远不要进入其余部分)。为此,我们从[[]]
当前元素开始并将其递归添加到我们已经生成的所有内容中,然后记住下一步的新列表:
subsets'' :: [a] -> [[a]]
subsets'' l = [[]] ++ subs [[]] l
where subs previous (x:xs) = let next = map (x:) previous
in next ++ subs (previous ++ next) xs
subs _ [] = []
Run Code Online (Sandbox Code Playgroud)
结果按此顺序:
*Main> take 100 $ subsets'' [1..]
[[],[1],[2],[2,1],[3],[3,1],[3,2],[3,2,1],[4],[4,1],[4,2],[4,2,1],[4,3],[4,3,1],[4,3,2],[4,3,2,1],[5],[5,1],[5,2],[5,2,1],[5,3],[5,3,1],[5,3,2],[5,3,2,1],[5,4],[5,4,1],[5,4,2],[5,4,2,1],[5,4,3],[5,4,3,1],[5,4,3,2],[5,4,3,2,1],[6],[6,1],[6,2],[6,2,1],[6,3],[6,3,1],[6,3,2],[6,3,2,1],[6,4],[6,4,1],[6,4,2],[6,4,2,1],[6,4,3],[6,4,3,1],[6,4,3,2],[6,4,3,2,1],[6,5],[6,5,1],[6,5,2],[6,5,2,1],[6,5,3],[6,5,3,1],[6,5,3,2],[6,5,3,2,1],[6,5,4],[6,5,4,1],[6,5,4,2],[6,5,4,2,1],[6,5,4,3],[6,5,4,3,1],[6,5,4,3,2],[6,5,4,3,2,1],[7],[7,1],[7,2],[7,2,1],[7,3],[7,3,1],[7,3,2],[7,3,2,1],[7,4],[7,4,1],[7,4,2],[7,4,2,1],[7,4,3],[7,4,3,1],[7,4,3,2],[7,4,3,2,1],[7,5],[7,5,1],[7,5,2],[7,5,2,1],[7,5,3],[7,5,3,1],[7,5,3,2],[7,5,3,2,1],[7,5,4],[7,5,4,1],[7,5,4,2],[7,5,4,2,1],[7,5,4,3],[7,5,4,3,1],[7,5,4,3,2],[7,5,4,3,2,1],[7,6],[7,6,1],[7,6,2],[7,6,2,1]]
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
352 次 |
最近记录: |