找到最佳子串匹配

Ghi*_*ADJ 18 python distance match n-gram

我正在寻找一个库或使用现有库的方法(difflib,fuzzywuzzy,python-levenshtein)中查找的字符串(的最接近的匹配query)文本(corpus)

我开发了一个基于的方法difflib,我将其corpus分成大小n(长度query)的ngrams .

import difflib
from nltk.util import ngrams

def get_best_match(query, corpus):
    ngs = ngrams( list(corpus), len(query) )
    ngrams_text = [''.join(x) for x in ngs]
    return difflib.get_close_matches(query, ngrams_text, n=1, cutoff=0)
Run Code Online (Sandbox Code Playgroud)

当查询和匹配字符串之间的差异只是字符替换时,它可以按我的意愿工作.

query = "ipsum dolor"
corpus = "lorem 1psum d0l0r sit amet"

match = get_best_match(query, corpus)
# match = "1psum d0l0r"
Run Code Online (Sandbox Code Playgroud)

但是当差异是字符删除时,它不是.

query = "ipsum dolor"
corpus = "lorem 1psum dlr sit amet"

match = get_best_match(query, corpus)
# match = "psum dlr si"
# expected_match = "1psum dlr"
Run Code Online (Sandbox Code Playgroud)

有没有办法获得更灵活的结果大小(至于expected_match)?

编辑1:

  • 此脚本的实际用途是将查询(字符串)与凌乱的ocr输出进行匹配.
  • 正如我在问题中所说,ocr可以混淆角色,甚至想念它们.
  • 如果可能的话,还要考虑单词之间缺少空格的情况.
  • 最佳匹配是指不包含除查询之外的其他单词的字符的匹配.

编辑2:

我现在使用的解决方案是扩展ngrams (n-k)-grams for k = {1,2,3}以防止3次删除.它比第一个版本要好得多,但在速度方面效率不高,因为我们要检查的ngrams数量超过3倍.它也是一种不可推广的解决方案.

Ulf*_*lak 7

此函数查找可变长度的最佳匹配子字符串 .

该实现将语料库视为一个长字符串,因此避免了您对空格和未分隔单词的关注.

代码摘要: 1.按大小步长扫描语料库中的匹配值,step找到最高匹配值的大致位置,pos. 2.pos通过调整子串的左/右位置,找到具有最高匹配值的附近的子串.

from difflib import SequenceMatcher

def get_best_match(query, corpus, step=4, flex=3, case_sensitive=False, verbose=False):
    """Return best matching substring of corpus.

    Parameters
    ----------
    query : str
    corpus : str
    step : int
        Step size of first match-value scan through corpus. Can be thought of
        as a sort of "scan resolution". Should not exceed length of query.
    flex : int
        Max. left/right substring position adjustment value. Should not
        exceed length of query / 2.

    Outputs
    -------
    output0 : str
        Best matching substring.
    output1 : float
        Match ratio of best matching substring. 1 is perfect match.
    """

    def _match(a, b):
        """Compact alias for SequenceMatcher."""
        return SequenceMatcher(None, a, b).ratio()

    def scan_corpus(step):
        """Return list of match values from corpus-wide scan."""
        match_values = []

        m = 0
        while m + qlen - step <= len(corpus):
            match_values.append(_match(query, corpus[m : m-1+qlen]))
            if verbose:
                print query, "-", corpus[m: m + qlen], _match(query, corpus[m: m + qlen])
            m += step

        return match_values

    def index_max(v):
        """Return index of max value."""
        return max(xrange(len(v)), key=v.__getitem__)

    def adjust_left_right_positions():
        """Return left/right positions for best string match."""
        # bp_* is synonym for 'Best Position Left/Right' and are adjusted 
        # to optimize bmv_*
        p_l, bp_l = [pos] * 2
        p_r, bp_r = [pos + qlen] * 2

        # bmv_* are declared here in case they are untouched in optimization
        bmv_l = match_values[p_l / step]
        bmv_r = match_values[p_l / step]

        for f in range(flex):
            ll = _match(query, corpus[p_l - f: p_r])
            if ll > bmv_l:
                bmv_l = ll
                bp_l = p_l - f

            lr = _match(query, corpus[p_l + f: p_r])
            if lr > bmv_l:
                bmv_l = lr
                bp_l = p_l + f

            rl = _match(query, corpus[p_l: p_r - f])
            if rl > bmv_r:
                bmv_r = rl
                bp_r = p_r - f

            rr = _match(query, corpus[p_l: p_r + f])
            if rr > bmv_r:
                bmv_r = rr
                bp_r = p_r + f

            if verbose:
                print "\n" + str(f)
                print "ll: -- value: %f -- snippet: %s" % (ll, corpus[p_l - f: p_r])
                print "lr: -- value: %f -- snippet: %s" % (lr, corpus[p_l + f: p_r])
                print "rl: -- value: %f -- snippet: %s" % (rl, corpus[p_l: p_r - f])
                print "rr: -- value: %f -- snippet: %s" % (rl, corpus[p_l: p_r + f])

        return bp_l, bp_r, _match(query, corpus[bp_l : bp_r])

    if not case_sensitive:
        query = query.lower()
        corpus = corpus.lower()

    qlen = len(query)

    if flex >= qlen/2:
        print "Warning: flex exceeds length of query / 2. Setting to default."
        flex = 3

    match_values = scan_corpus(step)
    pos = index_max(match_values) * step

    pos_left, pos_right, match_value = adjust_left_right_positions()

    return corpus[pos_left: pos_right].strip(), match_value
Run Code Online (Sandbox Code Playgroud)

例:

query = "ipsum dolor"
corpus = "lorem i psum d0l0r sit amet"
match = get_best_match(query, corpus, step=2, flex=4)
print match
('i psum d0l0r', 0.782608695652174)
Run Code Online (Sandbox Code Playgroud)

一些好的启发式建议是始终保持step < len(query) * 3/4,和flex < len(query) / 3.我还添加了区分大小写,以防这很重要.当您开始使用step和flex值时,它可以很好地工作.小步长值可以提供更好的结果,但计算时间更长.flex控制允许生成的子字符串的长度的灵活性.

重要的是要注意:这只会找到第一个最佳匹配,所以如果有多个同样好的匹配,则只返回第一个匹配.要允许多个匹配,请更改index_max()以返回n输入列表的最高值的索引列表,并循环访问adjust_left_right_positions()该列表中的值.

  • 有可用的 Python 3 版本吗? (2认同)