Sid*_*rth 5 python image machine-learning matplotlib computer-vision
从训练集中我拍了一张大小为(3,32,32)的图像('img').我用过plt.imshow(img.T).图像不清晰.现在我必须对图像('img')进行更改,以使其更清晰可见.谢谢.
use*_*359 18
下面打印5X5网格随机Cifar10图像.它并不模糊,但也不完美.欢迎任何建议.
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from six.moves import cPickle
f = open('data/cifar10/cifar-10-batches-py/data_batch_1', 'rb')
datadict = cPickle.load(f,encoding='latin1')
f.close()
X = datadict["data"]
Y = datadict['labels']
X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("uint8")
Y = np.array(Y)
#Visualizing CIFAR 10
fig, axes1 = plt.subplots(5,5,figsize=(3,3))
for j in range(5):
for k in range(5):
i = np.random.choice(range(len(X)))
axes1[j][k].set_axis_off()
axes1[j][k].imshow(X[i:i+1][0])
Run Code Online (Sandbox Code Playgroud)
该文件读取cifar10 数据集并使用matplotlib.
import _pickle as pickle
import argparse
import numpy as np
import os
import matplotlib.pyplot as plt
cifar10 = "./cifar-10-batches-py/"
parser = argparse.ArgumentParser("Plot training images in cifar10 dataset")
parser.add_argument("-i", "--image", type=int, default=0,
help="Index of the image in cifar10. In range [0, 49999]")
args = parser.parse_args()
def unpickle(file):
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
def cifar10_plot(data, meta, im_idx=0):
im = data[b'data'][im_idx, :]
im_r = im[0:1024].reshape(32, 32)
im_g = im[1024:2048].reshape(32, 32)
im_b = im[2048:].reshape(32, 32)
img = np.dstack((im_r, im_g, im_b))
print("shape: ", img.shape)
print("label: ", data[b'labels'][im_idx])
print("category:", meta[b'label_names'][data[b'labels'][im_idx]])
plt.imshow(img)
plt.show()
def main():
batch = (args.image // 10000) + 1
idx = args.image - (batch-1)*10000
data = unpickle(os.path.join(cifar10, "data_batch_" + str(batch)))
meta = unpickle(os.path.join(cifar10, "batches.meta"))
cifar10_plot(data, meta, im_idx=idx)
if __name__ == "__main__":
main()
Run Code Online (Sandbox Code Playgroud)
当您要显示图像时,请确保不要对数据集进行标准化。
装载机...
import torch
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('../data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize(
# (0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])),
batch_size=64, shuffle=True)
Run Code Online (Sandbox Code Playgroud)
显示图像的代码...
img = next(iter(train_loader))[0][0]
plt.imshow(transforms.ToPILImage()(img))
Run Code Online (Sandbox Code Playgroud)
归一化

没有标准化

| 归档时间: |
|
| 查看次数: |
13832 次 |
| 最近记录: |