我有两个嵌入物张A和B,它看起来像
[
[1,1,1],
[1,1,1]
]
Run Code Online (Sandbox Code Playgroud)
和
[
[0,0,0],
[1,1,1]
]
Run Code Online (Sandbox Code Playgroud)
我想要做的是按d(A,B)元素计算L2距离.
首先,我做了一个tf.square(tf.sub(lhs, rhs))让
[
[1,1,1],
[0,0,0]
]
Run Code Online (Sandbox Code Playgroud)
然后我想做一个返回的元素减少
[
3,
0
]
Run Code Online (Sandbox Code Playgroud)
但是tf.reduce_sum不允许我按行减少.任何输入将不胜感激.谢谢.
小智 9
添加reduction_indices值为1 的参数,例如:
tf.reduce_sum( tf.square( tf.sub( lhs, rhs) ), 1 )
Run Code Online (Sandbox Code Playgroud)
这应该产生你正在寻找的结果.这里是文档上reduce_sum().
根据TensorFlow文档,reduce_sum函数有四个参数.
tf.reduce_sum(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None).
Run Code Online (Sandbox Code Playgroud)
但reduction_indices已被弃用.最好用轴代替.如果未设置轴,则减小其所有尺寸.
例如,这取自文档,
# 'x' is [[1, 1, 1]
# [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6
Run Code Online (Sandbox Code Playgroud)
上述要求可以这种方式写出,
import numpy as np
import tensorflow as tf
a = np.array([[1,7,1],[1,1,1]])
b = np.array([[0,0,0],[1,1,1]])
xtr = tf.placeholder("float", [None, 3])
xte = tf.placeholder("float", [None, 3])
pred = tf.reduce_sum(tf.square(tf.subtract(xtr, xte)),1)
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
nn_index = sess.run(pred, feed_dict={xtr: a, xte: b})
print nn_index
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
13789 次 |
| 最近记录: |