rob*_*ert 39 python arrays numpy shuffle
我怎样才能在Python中按行对多维数组进行混洗(所以不要随机乱洗).
我正在寻找最有效的解决方案,因为我的矩阵非常庞大.是否也可以在原始阵列上高效工作(以节省内存)?
例:
import numpy as np
X = np.random.random((6, 2))
print(X)
Y = ???shuffle by row only not colls???
print(Y)
Run Code Online (Sandbox Code Playgroud)
我现在期待的是原始矩阵:
[[ 0.48252164 0.12013048]
[ 0.77254355 0.74382174]
[ 0.45174186 0.8782033 ]
[ 0.75623083 0.71763107]
[ 0.26809253 0.75144034]
[ 0.23442518 0.39031414]]
Run Code Online (Sandbox Code Playgroud)
输出混乱行不cols例如:
[[ 0.45174186 0.8782033 ]
[ 0.48252164 0.12013048]
[ 0.77254355 0.74382174]
[ 0.75623083 0.71763107]
[ 0.23442518 0.39031414]
[ 0.26809253 0.75144034]]
Run Code Online (Sandbox Code Playgroud)
Kas*_*mvd 37
这numpy.random.shuffle()
是为了:
>>> X = np.random.random((6, 2))
>>> X
array([[ 0.9818058 , 0.67513579],
[ 0.82312674, 0.82768118],
[ 0.29468324, 0.59305925],
[ 0.25731731, 0.16676408],
[ 0.27402974, 0.55215778],
[ 0.44323485, 0.78779887]])
>>> np.random.shuffle(X)
>>> X
array([[ 0.9818058 , 0.67513579],
[ 0.44323485, 0.78779887],
[ 0.82312674, 0.82768118],
[ 0.29468324, 0.59305925],
[ 0.25731731, 0.16676408],
[ 0.27402974, 0.55215778]])
Run Code Online (Sandbox Code Playgroud)
Div*_*kar 22
您还可以使用np.random.permutation
生成行索引的随机排列,然后索引的列X
使用np.take
带axis=0
.此外,np.take
有助于X
使用out=
选项覆盖输入数组本身,这将节省我们的内存.因此,实现看起来像这样 -
np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X)
Run Code Online (Sandbox Code Playgroud)
样品运行 -
In [23]: X
Out[23]:
array([[ 0.60511059, 0.75001599],
[ 0.30968339, 0.09162172],
[ 0.14673218, 0.09089028],
[ 0.31663128, 0.10000309],
[ 0.0957233 , 0.96210485],
[ 0.56843186, 0.36654023]])
In [24]: np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X);
In [25]: X
Out[25]:
array([[ 0.14673218, 0.09089028],
[ 0.31663128, 0.10000309],
[ 0.30968339, 0.09162172],
[ 0.56843186, 0.36654023],
[ 0.0957233 , 0.96210485],
[ 0.60511059, 0.75001599]])
Run Code Online (Sandbox Code Playgroud)
额外的性能提升
这里有一个窍门,以加快np.random.permutation(X.shape[0])
与np.argsort()
-
np.random.rand(X.shape[0]).argsort()
Run Code Online (Sandbox Code Playgroud)
加速结果 -
In [32]: X = np.random.random((6000, 2000))
In [33]: %timeit np.random.permutation(X.shape[0])
1000 loops, best of 3: 510 µs per loop
In [34]: %timeit np.random.rand(X.shape[0]).argsort()
1000 loops, best of 3: 297 µs per loop
Run Code Online (Sandbox Code Playgroud)
因此,改组解决方案可以修改为 -
np.take(X,np.random.rand(X.shape[0]).argsort(),axis=0,out=X)
Run Code Online (Sandbox Code Playgroud)
运行时测试 -
这些测试包括本文中列出的两种方法,np.shuffle
基于一种方法@Kasramvd's solution
.
In [40]: X = np.random.random((6000, 2000))
In [41]: %timeit np.random.shuffle(X)
10 loops, best of 3: 25.2 ms per loop
In [42]: %timeit np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X)
10 loops, best of 3: 53.3 ms per loop
In [43]: %timeit np.take(X,np.random.rand(X.shape[0]).argsort(),axis=0,out=X)
10 loops, best of 3: 53.2 ms per loop
Run Code Online (Sandbox Code Playgroud)
因此,似乎使用这些np.take
基础只能在内存是一个问题时使用,否则np.random.shuffle
基于解决方案看起来就像要走的路.
经过一些实验,我发现大多数内存和时间有效的方式来重新排列nd-array的数据(行方式),将索引洗牌并从混洗索引中获取数据
rand_num2 = np.random.randint(5, size=(6000, 2000))
perm = np.arange(rand_num2.shape[0])
np.random.shuffle(perm)
rand_num2 = rand_num2[perm]
Run Code Online (Sandbox Code Playgroud)
更多细节
在这里,我使用memory_profiler查找内存使用情况和python的内置"时间"模块来记录时间并比较所有以前的答案
def main():
# shuffle data itself
rand_num = np.random.randint(5, size=(6000, 2000))
start = time.time()
np.random.shuffle(rand_num)
print('Time for direct shuffle: {0}'.format((time.time() - start)))
# Shuffle index and get data from shuffled index
rand_num2 = np.random.randint(5, size=(6000, 2000))
start = time.time()
perm = np.arange(rand_num2.shape[0])
np.random.shuffle(perm)
rand_num2 = rand_num2[perm]
print('Time for shuffling index: {0}'.format((time.time() - start)))
# using np.take()
rand_num3 = np.random.randint(5, size=(6000, 2000))
start = time.time()
np.take(rand_num3, np.random.rand(rand_num3.shape[0]).argsort(), axis=0, out=rand_num3)
print("Time taken by np.take, {0}".format((time.time() - start)))
Run Code Online (Sandbox Code Playgroud)
时间的结果
Time for direct shuffle: 0.03345608711242676 # 33.4msec
Time for shuffling index: 0.019818782806396484 # 19.8msec
Time taken by np.take, 0.06726956367492676 # 67.2msec
Run Code Online (Sandbox Code Playgroud)
内存分析器结果
Line # Mem usage Increment Line Contents
================================================
39 117.422 MiB 0.000 MiB @profile
40 def main():
41 # shuffle data itself
42 208.977 MiB 91.555 MiB rand_num = np.random.randint(5, size=(6000, 2000))
43 208.977 MiB 0.000 MiB start = time.time()
44 208.977 MiB 0.000 MiB np.random.shuffle(rand_num)
45 208.977 MiB 0.000 MiB print('Time for direct shuffle: {0}'.format((time.time() - start)))
46
47 # Shuffle index and get data from shuffled index
48 300.531 MiB 91.555 MiB rand_num2 = np.random.randint(5, size=(6000, 2000))
49 300.531 MiB 0.000 MiB start = time.time()
50 300.535 MiB 0.004 MiB perm = np.arange(rand_num2.shape[0])
51 300.539 MiB 0.004 MiB np.random.shuffle(perm)
52 300.539 MiB 0.000 MiB rand_num2 = rand_num2[perm]
53 300.539 MiB 0.000 MiB print('Time for shuffling index: {0}'.format((time.time() - start)))
54
55 # using np.take()
56 392.094 MiB 91.555 MiB rand_num3 = np.random.randint(5, size=(6000, 2000))
57 392.094 MiB 0.000 MiB start = time.time()
58 392.242 MiB 0.148 MiB np.take(rand_num3, np.random.rand(rand_num3.shape[0]).argsort(), axis=0, out=rand_num3)
59 392.242 MiB 0.000 MiB print("Time taken by np.take, {0}".format((time.time() - start)))
Run Code Online (Sandbox Code Playgroud)
我尝试了很多解决方案,最后我使用了这个简单的解决方案:
from sklearn.utils import shuffle
x = np.array([[1, 2],
[3, 4],
[5, 6]])
print(shuffle(x, random_state=0))
Run Code Online (Sandbox Code Playgroud)
输出:
[
[5 6]
[3 4]
[1 2]
]
Run Code Online (Sandbox Code Playgroud)
如果您有 3d 数组,请循环遍历第一个轴 (axis=0) 并应用此函数,例如:
np.array([shuffle(item) for item in 3D_numpy_array])
Run Code Online (Sandbox Code Playgroud)