jar*_*ada 5 python opencv matchtemplate opencv3.0
OpenCV 3.0.0增加了在执行templateMatch时指定掩码的功能.当我指定一个掩码时,我收到此错误:error: (-215) (depth == CV_8U || depth == CV_32F) && type == _templ.type() && _img.dims() <= 2 in function matchTemplateMask
模板图像(带透明度的PNG):
来源图片:
码
# read the template emoji with the alpha channel
template = cv2.imread(imagePath, cv2.IMREAD_UNCHANGED)
channels = cv2.split(template)
zero_channel = np.zeros_like(channels[0])
mask = np.array(channels[3])
# all elements in alpha_channel that have value 0 are set to 1 in the mask matrix
mask[channels[3] == 0] = 1
# all elements in alpha_channel that have value 100 are set to 0 in the mask matrix
mask[channels[3] == 100] = 0
transparent_mask = cv2.merge([zero_channel, zero_channel, zero_channel, mask])
print image.shape, image.dtype # (72, 232, 3) uint8
print template.shape, template.dtype # (40, 40, 4) uint8
print transparent_mask.shape, transparent_mask.dtype # (40, 40, 4) uint8
# find the matches
res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED, mask=transparent_mask)
Run Code Online (Sandbox Code Playgroud)
图像类型有问题吗?我无法使用matchTemplate方法的新mask参数找到任何示例(在Python中).有谁知道如何创建面具?
我能够使用 Python 2.7.13 和opencv-python==3.1.0.4 让它工作
这是它的代码。
import cv2
import numpy as np
import sys
if len(sys.argv) < 3:
print 'Usage: python match.py <template.png> <image.png>'
sys.exit()
template_path = sys.argv[1]
template = cv2.imread(template_path, cv2.IMREAD_UNCHANGED)
channels = cv2.split(template)
zero_channel = np.zeros_like(channels[0])
mask = np.array(channels[3])
image_path = sys.argv[2]
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
mask[channels[3] == 0] = 1
mask[channels[3] == 100] = 0
# transparent_mask = None
# According to http://www.devsplanet.com/question/35658323, we can only use
# cv2.TM_SQDIFF or cv2.TM_CCORR_NORMED
# All methods can be seen here:
# http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html#which-are-the-matching-methods-available-in-opencv
method = cv2.TM_SQDIFF # R(x,y) = \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2 (essentially, sum of squared differences)
transparent_mask = cv2.merge([zero_channel, zero_channel, zero_channel, mask])
result = cv2.matchTemplate(image, template, method, mask=transparent_mask)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
print 'Lowest squared difference WITH mask', min_val
# Now we'll try it without the mask (should give a much larger error)
transparent_mask = None
result = cv2.matchTemplate(image, template, method, mask=transparent_mask)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
print 'Lowest squared difference WITHOUT mask', min_val
Run Code Online (Sandbox Code Playgroud)
这是一个要点。
本质上,您需要确保使用正确的匹配方法。
归档时间: |
|
查看次数: |
3369 次 |
最近记录: |