tim*_*ler 6 apache-flink flink-streaming
我是apache flink的新手.我的输入中有一个未绑定的数据流(通过kakfa送入flink 0.10).
我想获得每个主键的第一次出现(主键是contract_num和event_dt).
这些"重复"几乎在彼此之后立即发生.源系统不能为我过滤这个,所以flink必须这样做.
这是我的输入数据:
contract_num,event_dt,attr
A1,2016-02-24
10:25: 08,X
A1,2016-02-24
10:25: 08,Y A1,2016-02-24 10:25: 09,Z
A2,2016-02-24 10:25:10,C
这是我想要的输出数据:
A1,2016-02-24 10 :25: 08,X A1,2016-02-24 10 :25:
09,Z A2,2016-02-24 10 :25:10
,C
请注意第2行已被删除,因为A001和'2016-02-24 10:25:08'的组合键已在第1行中出现.
我怎么能用flink 0.10做到这一点?
我正在考虑使用keyBy(0,1),
但之后我不知道该怎么做!
(我使用joda-time和org.flinkspector来设置这些测试).
contract_num, event_dt, attr
A1, 2016-02-24 10:25:08, X
A1, 2016-02-24 10:25:08, Y
A1, 2016-02-24 10:25:09, Z
A2, 2016-02-24 10:25:10, C
Run Code Online (Sandbox Code Playgroud)
Til*_*ann 10
如果密钥空间大于可用存储空间,则在无限流上过滤重复项最终将失败.原因是您必须将已经看到的键存储在某处以过滤掉重复项.因此,最好定义一个时间窗口,之后您可以清除当前看到的键组.
如果你知道这个问题但想要尝试它,你可以通过flatMap在keyBy通话后应用有状态操作来实现.有状态映射器使用Flink的状态抽象来存储它是否已经看到具有此键的元素.这样,您也将受益于Flink的容错机制,因为您的状态将自动检查点.
一个完成你工作的Flink程序可能看起来像
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple3<String, Date, String>> input = env.fromElements(Tuple3.of("foo", new Date(1000), "bar"), Tuple3.of("foo", new Date(1000), "foobar"));
input.keyBy(0, 1).flatMap(new DuplicateFilter()).print();
env.execute("Test");
}
Run Code Online (Sandbox Code Playgroud)
执行的地方DuplicateFilter取决于Flink的版本.
public static class DuplicateFilter extends RichFlatMapFunction<Tuple3<String, Date, String>, Tuple3<String, Date, String>> {
static final ValueStateDescriptor<Boolean> descriptor = new ValueStateDescriptor<>("seen", Boolean.class, false);
private ValueState<Boolean> operatorState;
@Override
public void open(Configuration configuration) {
operatorState = this.getRuntimeContext().getState(descriptor);
}
@Override
public void flatMap(Tuple3<String, Date, String> value, Collector<Tuple3<String, Date, String>> out) throws Exception {
if (!operatorState.value()) {
// we haven't seen the element yet
out.collect(value);
// set operator state to true so that we don't emit elements with this key again
operatorState.update(true);
}
}
}
Run Code Online (Sandbox Code Playgroud)
public static class DuplicateFilter extends RichFlatMapFunction<Tuple3<String, Date, String>, Tuple3<String, Date, String>> {
private OperatorState<Boolean> operatorState;
@Override
public void open(Configuration configuration) {
operatorState = this.getRuntimeContext().getKeyValueState("seen", Boolean.class, false);
}
@Override
public void flatMap(Tuple3<String, Date, String> value, Collector<Tuple3<String, Date, String>> out) throws Exception {
if (!operatorState.value()) {
// we haven't seen the element yet
out.collect(value);
operatorState.update(true);
}
}
}
Run Code Online (Sandbox Code Playgroud)
input.keyBy(0, 1).timeWindow(Time.seconds(1)).apply(new WindowFunction<Iterable<Tuple3<String,Date,String>>, Tuple3<String, Date, String>, Tuple, TimeWindow>() {
@Override
public void apply(Tuple tuple, TimeWindow window, Iterable<Tuple3<String, Date, String>> input, Collector<Tuple3<String, Date, String>> out) throws Exception {
out.collect(input.iterator().next());
}
})
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2006 次 |
| 最近记录: |