如何使用Python平均信号以消除噪声

LaG*_*lle 2 python signals signal-processing average

我正在使用Arduino Mega 2560开发板在实验室中进行一个小项目。我想对三角波的正斜率部分(上升)的信号(电压)进行平均,以尝试消除尽可能多的噪声。我的频率是20Hz,我正在以115200位/秒的数据速率工作(Arduino建议将数据传输到计算机的最快速度)。

原始信号如下所示:

原始信号

原始信号缩放

原始信号放大

我的数据存储在一个文本文件中,每一行对应一个数据点。由于我确实有成千上万个数据点,因此我希望进行一些平均可以使信号的外观变得平滑,并且在这种情况下可以形成接近完美的直线。但是,其他实验条件可能会导致产生一个信号,使我可以沿三角波的正斜率部分具有特征,例如负峰,并且我绝对需要能够在平均信号上看到此特征。

我是Python初学者,所以我可能没有理想的方法,而且我的代码对于大多数人来说可能看起来很糟糕,但是我仍然想获得关于如何改进信号处理代码以取得更好效果的提示/想法。通过平均信号去除噪声。

#!/usr/bin/python
import matplotlib.pyplot as plt
import math

# *** OPEN AND PLOT THE RAW DATA ***
data_filename = "My_File_Name"
filepath = "My_File_Path" + data_filename + ".txt"

# Open the Raw Data
with open(filepath, "r") as f:
    rawdata = f.readlines()

# Remove the \n     
rawdata = map(lambda s: s.strip(), rawdata)

# Plot the Raw Data
plt.plot(rawdata, 'r-')
plt.ylabel('Lightpower (V)')
plt.show()

# *** FIND THE LOCAL MAXIMUM AND MINIMUM
# Number of data points for each range 
datarange = 15 # This number can be changed for better processing
max_i_range = int(math.floor(len(rawdata)/datarange))-3

#Declare an empty lists for the max and min
min_list = []
max_list = []

min_list_index = []
max_list_index = []

i=0

for i in range(0, max_i_range):
    delimiter0 = i * datarange
    delimiter1 = (i+1) * datarange
    delimiter2 = (i+2) * datarange
    delimiter3 = (i+3) * datarange

    sumrange1 = sum(float(rawdata[i]) for i in range(delimiter0, delimiter1 + 1))
    averagerange1 = sumrange1 / len(rawdata[delimiter0:delimiter1])
    sumrange2 = sum(float(rawdata[i]) for i in range(delimiter1, delimiter2 + 1))
    averagerange2 = sumrange2 / len(rawdata[delimiter1:delimiter2])
    sumrange3 = sum(float(rawdata[i]) for i in range(delimiter2, delimiter3 + 1))
    averagerange3 = sumrange3 / len(rawdata[delimiter2:delimiter3])

    # Find if there is a minimum in range 2
    if ((averagerange1 > averagerange2) and (averagerange2 < averagerange3)):
        min_list.append(min(rawdata[delimiter1:delimiter2])) # Find the value of all the minimum 

        #Find the index of the minimum
        min_index = delimiter1 + [k for k, j in enumerate(rawdata[delimiter1:delimiter2]) if j == min(rawdata[delimiter1:delimiter2])][0] # [0] To use the first index out of the possible values
        min_list_index.append(min_index)


    # Find if there is a maximum in range 2
    if ((averagerange1 < averagerange2) and (averagerange2 > averagerange3)):
        max_list.append(max(rawdata[delimiter1:delimiter2])) # Find the value of all the maximum

        #Find the index of the maximum
        max_index = delimiter1 + [k for k, j in enumerate(rawdata[delimiter1:delimiter2]) if j == max(rawdata[delimiter1:delimiter2])][0] # [0] To use the first index out of the possible values
        max_list_index.append(max_index)



# *** PROCESS EACH RISE PATTERN ***

# One rise pattern goes from a min to a max
numb_of_rise_pattern = 50 # This number can be increased or lowered. This will average 50 rise patterns

max_min_diff_total = 0

for i in range(0, numb_of_rise_pattern):
    max_min_diff_total = max_min_diff_total + (max_list_index[i]-min_list_index[i])

# Find the average number of points for each rise pattern
max_min_diff_avg = abs(max_min_diff_total / numb_of_rise_pattern)

# Find the average values for each of the rise pattern
avg_position_value_list = []


for i in range(0, max_min_diff_avg):

    sum_position_value = 0
    for j in range(0, numb_of_rise_pattern):

        sum_position_value = sum_position_value + float( rawdata[ min_list_index[j] + i ] )
    avg_position_value = sum_position_value / numb_of_rise_pattern

    avg_position_value_list.append(avg_position_value)


#Plot the Processed Signal
plt.plot(avg_position_value_list, 'r-')
plt.title(data_filename)
plt.ylabel('Lightpower (V)')
plt.show()
Run Code Online (Sandbox Code Playgroud)

最后,处理后的信号如下所示:

平均信号

我期望得到一条直线,但我可能是错的。我相信我的代码中可能存在很多缺陷,并且肯定会有更好的方法来实现我想要的。如果有人想玩的话,我提供了一个包含一些原始数据的文本文件的链接。

http://www108.zippyshare.com/v/2iba0XMD/file.html

Edw*_*ney 7

更简单的方法可能是使用平滑功能,例如移动窗口平均值。使用pandas的rolling_mean函数可以很容易地实现这一点。(仅显示501个点。)调整数值参数(窗口大小)以获得不同程度的平滑。

import pandas as pd
import matplotlib.pyplot as plt

# Plot the Raw Data
plt.plot(rawdata[0:500], 'r-')
plt.ylabel('Lightpower (V)')

smooth_data = pd.rolling_mean(ts,5).plot(style='k')
plt.show()
Run Code Online (Sandbox Code Playgroud)

移动平均线

基本上,移动平均线是一个低通滤波器。因此,我们还可以使用SciPy的功能实现一个低通滤波器,如下所示:

import scipy.signal as signal

# First, design the Buterworth filter
N  = 3    # Filter order
Wn = 0.1 # Cutoff frequency
B, A = signal.butter(N, Wn, output='ba')
smooth_data = signal.filtfilt(B,A, rawdata[0:500])
plt.plot(rawdata[0:500],'r-')
plt.plot(smooth_data[0:500],'b-')
plt.show()
Run Code Online (Sandbox Code Playgroud)

低通滤波器

Butterworth过滤器方法来自BTW的OceanPython.org