如何在数字数组中填充NaN值以应用SVD?

Yas*_*min 0 python numpy svd python-3.x

我将两个数据帧合并在一起,这些数据帧具有一些公共列,但是有一些不同的列。我想对合并的数据帧应用奇异值分解(SVD)。但是,填充NaN值会影响结果,在我的情况下,即使用零填充数据也将是错误的,因为有些列的值为零。这是一个例子。有什么办法解决这个问题?

>>> df1 = pd.DataFrame(np.random.rand(6, 4), columns=['A', 'B', 'C', 'D'])
>>> df1
          A         B         C         D
0  0.763144  0.752176  0.601228  0.290276
1  0.632144  0.202513  0.111766  0.317838
2  0.494587  0.318276  0.951354  0.051253
3  0.184826  0.429469  0.280297  0.014895
4  0.236955  0.560095  0.357246  0.302688
5  0.729145  0.293810  0.525223  0.744513
>>> df2 = pd.DataFrame(np.random.rand(6, 4), columns=['A', 'B', 'C', 'E'])
>>> df2
          A         B         C         E
0  0.969758  0.650887  0.821926  0.884600
1  0.657851  0.158992  0.731678  0.841507
2  0.923716  0.524547  0.783581  0.268123
3  0.935014  0.219135  0.152794  0.433324
4  0.327104  0.581433  0.474131  0.521481
5  0.366469  0.709115  0.462106  0.416601
>>> df3 = pd.concat([df1,df2], axis=0)
>>> df3
          A         B         C         D         E
0  0.763144  0.752176  0.601228  0.290276       NaN
1  0.632144  0.202513  0.111766  0.317838       NaN
2  0.494587  0.318276  0.951354  0.051253       NaN
3  0.184826  0.429469  0.280297  0.014895       NaN
4  0.236955  0.560095  0.357246  0.302688       NaN
5  0.729145  0.293810  0.525223  0.744513       NaN
0  0.969758  0.650887  0.821926       NaN  0.884600
1  0.657851  0.158992  0.731678       NaN  0.841507
2  0.923716  0.524547  0.783581       NaN  0.268123
3  0.935014  0.219135  0.152794       NaN  0.433324
4  0.327104  0.581433  0.474131       NaN  0.521481
5  0.366469  0.709115  0.462106       NaN  0.416601
>>> U, s, V = np.linalg.svd(df3.values, full_matrices=True)

Traceback (most recent call last):
  File "<input>", line 1, in <module>
  File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/numpy-1.11.0b3-py3.4-macosx-10.6-intel.egg/numpy/linalg/linalg.py", line 1359, in svd
    u, s, vt = gufunc(a, signature=signature, extobj=extobj)
  File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/numpy-1.11.0b3-py3.4-macosx-10.6-intel.egg/numpy/linalg/linalg.py", line 99, in _raise_linalgerror_svd_nonconvergence
    raise LinAlgError("SVD did not converge")
numpy.linalg.linalg.LinAlgError: SVD did not converge
Run Code Online (Sandbox Code Playgroud)

注意:我无法应用插值,因为我想保留一些记录没有某些列信息,但是其他记录有

ali*_*i_m 5

可以使用迭代过程来估计缺少值的矩阵的SVD:

  1. 用粗略的近似值填写缺失值(例如,用列均值替换它们)
  2. 在填充矩阵上执行SVD
  3. 从SVD重构数据矩阵,以便更好地近似缺失值
  4. 重复步骤2-3,直到收敛

这是期望最大化(EM)算法的一种形式,其中E步骤更新SVD中缺失值的估计,而M步骤根据数据矩阵的更新估计来计算SVD(更多信息,请参见此处的1.3节))。

import numpy as np
from scipy.sparse.linalg import svds
from functools import partial


def emsvd(Y, k=None, tol=1E-3, maxiter=None):
    """
    Approximate SVD on data with missing values via expectation-maximization

    Inputs:
    -----------
    Y:          (nobs, ndim) data matrix, missing values denoted by NaN/Inf
    k:          number of singular values/vectors to find (default: k=ndim)
    tol:        convergence tolerance on change in trace norm
    maxiter:    maximum number of EM steps to perform (default: no limit)

    Returns:
    -----------
    Y_hat:      (nobs, ndim) reconstructed data matrix
    mu_hat:     (ndim,) estimated column means for reconstructed data
    U, s, Vt:   singular values and vectors (see np.linalg.svd and 
                scipy.sparse.linalg.svds for details)
    """

    if k is None:
        svdmethod = partial(np.linalg.svd, full_matrices=False)
    else:
        svdmethod = partial(svds, k=k)
    if maxiter is None:
        maxiter = np.inf

    # initialize the missing values to their respective column means
    mu_hat = np.nanmean(Y, axis=0, keepdims=1)
    valid = np.isfinite(Y)
    Y_hat = np.where(valid, Y, mu_hat)

    halt = False
    ii = 1
    v_prev = 0

    while not halt:

        # SVD on filled-in data
        U, s, Vt = svdmethod(Y_hat - mu_hat)

        # impute missing values
        Y_hat[~valid] = (U.dot(np.diag(s)).dot(Vt) + mu_hat)[~valid]

        # update bias parameter
        mu_hat = Y_hat.mean(axis=0, keepdims=1)

        # test convergence using relative change in trace norm
        v = s.sum()
        if ii >= maxiter or ((v - v_prev) / v_prev) < tol:
            halt = True
        ii += 1
        v_prev = v

    return Y_hat, mu_hat, U, s, Vt
Run Code Online (Sandbox Code Playgroud)