检查 data.frame 列中的所有非数字条目并删除或替换

Mac*_*Mac 1 select r subset dataframe

我正面临一个特定的经验问题。我在 data.frame 列中有一个因变量。我可以轻松删除所有 NA 和所有非数字术语(不幸的是,这是一个开放式文本设计问题)。但是在那些非数字条目中有一些字符串和其他信息,我想手动检查(为了可能的插补)。

df <- data.frame(list(A=c(1, 2, 3, 4, 5, 6, 7, 8, 9), B=c("40g", "< 2", "thx", "about 1", "1-2", "1/2", 3, 2.3, "two")))

  A       B
1 1     40g
2 2     < 2
3 3     thx
4 4 about 1
5 5     1-2
6 6     1/2
7 7       3
8 8     2.3
9 9     two
Run Code Online (Sandbox Code Playgroud)

我认为没有特定的例程来列出所有非数字条目,并在每种情况下询问我是否要保留它或替换此条目的另一个值。但也许这至少对整个列来说是可能的?

最后我想得到以下结构:

  A   B
1 1 0.4
2 2  NA
3 3  NA
4 4 1.0
5 5 1.5
6 6 NA
7 7 3.0
8 8 2.3
9 9 2.0
Run Code Online (Sandbox Code Playgroud)

因为有非常不同的条目,我需要为每个案例判断我是否可以假设一个数值(有时是平均值)。例如,我计算信息“1-2”或“1 和 2 之间”的平均值,然后将“40g”等不同单位转换为“0.4”,但忽略所有无意义字符串“banana”以及所有歧义信息(“< 2”)。

报告的度量是消耗的数量。所以没有负单位。有时是克或公斤。

非常感谢!

更新

非常感谢 Tensibai 指定我的问题!以下是我如何创建一个有问题的非数字列表,这些非数字可能是也可能不是插补的潜在候选者:

df <- data.frame(A=c(1, 2, 3, 4, 5, 6, 7, 8, 9), B=c("40g", "< 2", "thx", "about 1", "1-2", "1/2", 3, 2.3, "two"))
df$B <- as.character(df$B)
df$B[is.na( as.numeric(df$B) ) ]
[1] "40g"     "< 2"     "thx"     "about 1" "1-2"     "1/2"     "two"  
Run Code Online (Sandbox Code Playgroud)

现在我想创建类似向量的东西,例如

(0.4, NA, NA, 1, 1.5, NA, 2)
Run Code Online (Sandbox Code Playgroud)

它应该在我原来的 data.frame 中的位置替换之前列出的条目。我不需要任何转换步骤的功能,但会手动完成!

Ten*_*bai 5

我会使用循环和 readline 来创建这样的新向量:

df <- data.frame(list(A=c(1, 2, 3, 4, 5, 6, 7, 8, 9), B=c("40g", "< 2", "thx", "about 1", "1-2", "1/2", 3, 2.3, "two")))
df$B <- as.character(df$B)

myscan <- function(x) {
 new <- vector("numeric",length(x))
 for(i in seq_along(x)) {
   new[i] <- readline(sprintf("Non numeric entry '%s' new value to set: ",x[i]))
 }
 as.numeric(new)
}

# get the entries 
notNum <- is.na( as.numeric(df$B) )
# Loop and ask for updates
df$B[notNum] <-  myscan(df$B[notNum])
Run Code Online (Sandbox Code Playgroud)

运行时它给出:

> df$B[notNum] <- as.numeric( myscan(df$B[notNum]) )
Non numeric entry '40g' new value to set: 0.4
Non numeric entry '< 2' new value to set: na
Non numeric entry 'thx' new value to set: ba
Non numeric entry 'about 1' new value to set: 1
Non numeric entry '1-2' new value to set: 1.5
Non numeric entry '1/2' new value to set: na
Non numeric entry 'two' new value to set: 2
Run Code Online (Sandbox Code Playgroud)

然后我们将列返回到数字状态:

df$B <- as.numeric(df$B)
Run Code Online (Sandbox Code Playgroud)

我们得到了新的数据框:

> df
  A   B
1 1 0.4
2 2  NA
3 3  NA
4 4 1.0
5 5 1.5
6 6  NA
7 7 3.0
8 8 2.3
9 9 2.0
Run Code Online (Sandbox Code Playgroud)