min*_*nks 51 python matplotlib matrix scikit-learn text-classification
我正在使用scikit-learn将文本文档(22000)分类为100个类.我使用scikit-learn的混淆矩阵方法来计算混淆矩阵.
model1 = LogisticRegression()
model1 = model1.fit(matrix, labels)
pred = model1.predict(test_matrix)
cm=metrics.confusion_matrix(test_labels,pred)
print(cm)
plt.imshow(cm, cmap='binary')
Run Code Online (Sandbox Code Playgroud)
这就是我的混淆矩阵的样子:
[[3962 325 0 ..., 0 0 0]
[ 250 2765 0 ..., 0 0 0]
[ 2 8 17 ..., 0 0 0]
...,
[ 1 6 0 ..., 5 0 0]
[ 1 1 0 ..., 0 0 0]
[ 9 0 0 ..., 0 0 9]]
Run Code Online (Sandbox Code Playgroud)
但是,我没有收到明确或清晰的情节.有一个更好的方法吗?
bni*_*aul 101
你可以用plt.matshow()而不是plt.imshow()或者你可以使用seaborn模块heatmap(见文档)来绘制混淆矩阵
import seaborn as sn
import pandas as pd
import matplotlib.pyplot as plt
array = [[33,2,0,0,0,0,0,0,0,1,3],
[3,31,0,0,0,0,0,0,0,0,0],
[0,4,41,0,0,0,0,0,0,0,1],
[0,1,0,30,0,6,0,0,0,0,1],
[0,0,0,0,38,10,0,0,0,0,0],
[0,0,0,3,1,39,0,0,0,0,4],
[0,2,2,0,4,1,31,0,0,0,2],
[0,1,0,0,0,0,0,36,0,2,0],
[0,0,0,0,0,0,1,5,37,5,1],
[3,0,0,0,0,0,0,0,0,39,0],
[0,0,0,0,0,0,0,0,0,0,38]]
df_cm = pd.DataFrame(array, index = [i for i in "ABCDEFGHIJK"],
columns = [i for i in "ABCDEFGHIJK"])
plt.figure(figsize = (10,7))
sn.heatmap(df_cm, annot=True)
Run Code Online (Sandbox Code Playgroud)
小智 41
@bninopaul的回答并不完全适合初学者
这是你可以"复制和运行"的代码
import seaborn as sn
import pandas as pd
import matplotlib.pyplot as plt
array = [[13,1,1,0,2,0],
[3,9,6,0,1,0],
[0,0,16,2,0,0],
[0,0,0,13,0,0],
[0,0,0,0,15,0],
[0,0,1,0,0,15]]
df_cm = pd.DataFrame(array, range(6),
range(6))
#plt.figure(figsize = (10,7))
sn.set(font_scale=1.4)#for label size
sn.heatmap(df_cm, annot=True,annot_kws={"size": 16})# font size
plt.show()
Run Code Online (Sandbox Code Playgroud)

Wag*_*ano 17
如果你想在混淆矩阵中有更多数据,包括" totals column "和" totals line ",以及每个单元格中的百分比(%),就像matlab默认(见下图)
包括热图和其他选项......
你应该玩上面的模块,在github中共享; )
https://github.com/wcipriano/pretty-print-confusion-matrix
这个模块可以轻松完成你的任务并产生上面的输出,有很多参数来定制你的CM:

| 归档时间: |
|
| 查看次数: |
109856 次 |
| 最近记录: |