小智 5
merge() 是相当有限的。您可以使用 pandasql.sqldf 完成更复杂的连接。您几乎可以编写任何 sql 查询,并在 sql 语句中将您现有的数据帧引用为表名。
https://github.com/yhat/pandasql/
一个已知的 bug 是无法在产品连接中选择多个表,例如
select d1.something, d2.something else from df1 as d1, df2 as d2 where d1.date=d2.date
Run Code Online (Sandbox Code Playgroud)
但是,如果您可以毫无问题地进行连接,并且我上面的语句可以转换为连接。
Pandas merge()允许两个数据框之间进行outer, left,right连接(不仅仅是inner连接),因此您可以返回不匹配的记录。此外,merge()甚至可以概括为返回交叉连接(两个数据帧之间的所有组合匹配),并且通过之后的过滤,您可以返回不匹配的记录。更重要的是,还有isin() pandas 方法。
考虑以下演示。下面是我们喜欢的计算机语言的两个数据框架。如图所示,第一数据帧是第二数据帧的子集。外连接返回两个中的记录,以NaN查找不匹配的列,这些列可以稍后过滤掉。交叉联接返回完整的行,可以过滤这些行并isin()搜索列中的值:
import pandas as pd
df1 = pd.DataFrame({'Languages': ['C++', 'C', 'Java', 'C#', 'Python', 'PHP'],
'Uses': ['computing', 'computing', 'application', 'application', 'application', 'web'],
'Type': ['Proprietary', 'Proprietary', 'Proprietary', 'Proprietary', 'Open-Source', 'Open-Source']})
df2 = pd.DataFrame({'Languages': ['C++', 'C', 'Java', 'C#', 'Python', 'PHP',
'Perl', 'R', 'Ruby', 'VB.NET', 'Javascript', 'Matlab'],
'Uses': ['computing', 'computing', 'application', 'application', 'application', 'web',
'application', 'computing', 'web', 'application', 'web', 'computing'],
'Type': ['Proprietary', 'Proprietary', 'Proprietary', 'Proprietary', 'Open-Source',
'Open-Source', 'Open-Source', 'Open-Source', 'Open-Source', 'Proprietary',
'Open-Source', 'Proprietary']})
# OUTER JOIN
mergedf = pd.merge(df1, df2, on=['Languages'], how='outer')
# FILTER OUT LANGUAGES IN SMALLER THAT IS NULL
mergedf = mergedf[pd.isnull(mergedf['Type_x'])][['Languages', 'Uses_y', 'Type_y']]
# Languages Uses_y Type_y
#6 Perl application Open-Source
#7 R computing Open-Source
#8 Ruby web Open-Source
#9 VB.NET application Proprietary
#10 Javascript web Open-Source
#11 Matlab computing Proprietary
# ISIN COMPARISON, RETURNING RECORDS IN LARGER NOT IN SMALLER
unequaldf = df2[~df2.Languages.isin(df1['Languages'])]
# Languages Type Uses
#6 Perl Open-Source application
#7 R Open-Source computing
#8 Ruby Open-Source web
#9 VB.NET Proprietary application
#10 Javascript Open-Source web
#11 Matlab Proprietary computing
# CROSS JOIN
df1['key'] = 1 # (REQUIRES A JOIN KEY OF SAME VALUE)
df2['key'] = 1
crossjoindf = pd.merge(df1, df2, on=['key'])
# FILTER FOR LANGUAGES IN LARGER NOT IN SMALLER (ALSO USING ISIN)
crossjoindf = crossjoindf[~crossjoindf['Languages_y'].isin(crossjoindf['Languages_x'])]\
[['Languages_y', 'Uses_y', 'Type_y']].drop_duplicates()
# Languages_y Uses_y Type_y
#6 Perl application Open-Source
#7 R computing Open-Source
#8 Ruby web Open-Source
#9 VB.NET application Proprietary
#10 Javascript web Open-Source
#11 Matlab computing Proprietary
Run Code Online (Sandbox Code Playgroud)
诚然,交叉连接在这里可能是多余和冗长的,但如果您的不匹配的需求需要跨数据帧进行排列,它会很方便。