因此,我应该编写一个Python程序,该程序将以某个封闭的间隔[2,n](每行一个)识别并打印所有理想数。我们只需要使用嵌套的while循环/ if-else语句。我使用for循环以某种方式做到了,但使用while循环无法弄清楚。如果您能向我展示如何将我的代码转换为while循环,我将不胜感激。多谢你们。这是我所拥有的:
limit = int(input("enter upper limit for perfect number search: "))
for n in range(2, limit + 1):
sum = 0
for divisor in range(1, n):
if not n % divisor:
sum += divisor
if sum == n:
print(n, "is a perfect number")
Run Code Online (Sandbox Code Playgroud)
这是一个(更有效的)筛选版本:
# search all numbers in [2..limit] for perfect numbers
# (ones whose proper divisors sum to the number)
limit = int(input("enter upper limit for perfect number search: "))
# initialize - all entries are multiples of 1
# (ignore sieve[0] and sieve[1])
sieve = [1] * (limit + 1)
n = 2
while n <= limit:
# check n
if sieve[n] == n:
print(n, "is a perfect number")
# add n to all k * n where k > 1
kn = 2 * n
while kn <= limit:
sieve[kn] += n
kn += n
n += 1
Run Code Online (Sandbox Code Playgroud)
运行它到 10000 个发现
6 is a perfect number
28 is a perfect number
496 is a perfect number
8128 is a perfect number
Run Code Online (Sandbox Code Playgroud)
并分解这些显示了一个有趣的模式:
6 3 * 2 ( 4 - 1) * ( 4 / 2)
28 7 * 2 * 2 ( 8 - 1) * ( 8 / 2)
496 31 * 2 * 2 * 2 * 2 ( 32 - 1) * ( 32 / 2)
8128 127 * 2 * 2 * 2 * 2 * 2 * 2 (128 - 1) * (128 / 2)
Run Code Online (Sandbox Code Playgroud)
其中第一个因数 (3, 7, 31, 127) 是一个小于 2 的幂的素数,然后乘以相同的 2 的幂的一半。此外,所涉及的权力是质数 ( 2**2, 2**3, 2**5, 2**7)。
事实上,欧几里得证明(2**p - 1) * 2**(p - 1)了如果2**p - 1是素数,它是一个完美数,这只有在是素数时才有可能(虽然不能确定)p。欧拉更进一步,证明了所有甚至完全数都必须具有这种形式。
这表明了一个非常有效的版本 - 我将继续使用 for 循环,随意重写它。首先,我们需要一个素数来源和一个 is_prime 测试:
def primes(known_primes=[7, 11, 13, 17, 19, 23, 29]):
"""
Generate every prime number in ascending order
"""
# 2, 3, 5 wheel
yield from (2, 3, 5)
yield from known_primes
# The first time the generator runs, known_primes
# contains all primes such that 5 < p < 2 * 3 * 5
# After each wheel cycle the list of known primes
# will be added to.
# We need to figure out where to continue from,
# which is the next multiple of 30 higher than
# the last known_prime:
base = 30 * (known_primes[-1] // 30 + 1)
new_primes = []
while True:
# offs is chosen so 30*i + offs cannot be a multiple of 2, 3, or 5
for offs in (1, 7, 11, 13, 17, 19, 23, 29):
k = base + offs # next prime candidate
for p in known_primes:
if not k % p:
# found a factor - not prime
break
elif p*p > k:
# no smaller prime factors - found a new prime
new_primes.append(k)
break
if new_primes:
yield from new_primes
known_primes.extend(new_primes)
new_primes = []
base += 30
def is_prime(n):
for p in primes():
if not n % p:
# found a factor - not prime
return False
elif p * p > n:
# no factors found - is prime
return True
Run Code Online (Sandbox Code Playgroud)
然后搜索看起来像
# search all numbers in [2..limit] for perfect numbers
# (ones whose proper divisors sum to the number)
limit = int(input("enter upper limit for perfect number search: "))
for p in primes():
pp = 2**p
perfect = (pp - 1) * (pp // 2)
if perfect > limit:
break
elif is_prime(pp - 1):
print(perfect, "is a perfect number")
Run Code Online (Sandbox Code Playgroud)
哪个发现
enter upper limit for perfect number search: 2500000000000000000
6 is a perfect number
28 is a perfect number
496 is a perfect number
8128 is a perfect number
33550336 is a perfect number
8589869056 is a perfect number
137438691328 is a perfect number
2305843008139952128 is a perfect number
Run Code Online (Sandbox Code Playgroud)
不到一秒钟;-)
您可以将for循环替换为以下内容:
n = 2
while n < limit + 1:
...
divisor = 1
while divisor < n:
...
divisor += 1
...
n += 1
Run Code Online (Sandbox Code Playgroud)
提示:您也可以将其n/2用作第二个循环的上限,因为的任何除数n都不能大于n/2。
这应该有效:
limit = int(input("enter upper limit for perfect number search: "))
n = 1
while n <= limit:
sum = 0
divisor = 1
while divisor < n:
if not n % divisor:
sum += divisor
divisor = divisor + 1
if sum == n:
print(n, "is a perfect number")
n = n + 1
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
10270 次 |
| 最近记录: |