Dav*_*.it 5 lua neural-network torch
我还在努力在我的暹罗神经网络上实现小批量梯度更新.以前我有一个实现问题,这里已经正确解决了.
现在我意识到我的神经网络架构中也存在一个错误,这与我对正确实现的不完全理解有关.
到目前为止,我总是使用非小批量梯度下降方法,其中我将训练元素逐个传递给渐变更新.现在,我想通过小批量实现渐变更新,首先是用N = 2个元素构成的小型游戏.
我的问题是:我应该如何改变我的暹罗神经网络的架构,使其能够处理一小批N = 2个元素而不是单个元素?
这是我的暹罗神经网络的(简化)架构:
nn.Sequential {
[input -> (1) -> (2) -> output]
(1): nn.ParallelTable {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> output]
| (1): nn.Linear(6 -> 3)
| (2): nn.Linear(3 -> 2)
| }
|`-> (2): nn.Sequential {
| [input -> (1) -> (2) -> output]
| (1): nn.Linear(6 -> 3)
| (2): nn.Linear(3 -> 2)
| }
... -> output
}
(2): nn.CosineDistance
}
Run Code Online (Sandbox Code Playgroud)
我有:
这是我的代码:
perceptronUpper= nn.Sequential()
perceptronUpper:add(nn.Linear(input_number, hiddenUnits))
perceptronUpper:add(nn.Linear(hiddenUnits,output_number))
perceptronLower= perceptronUpper:clone('weight', 'gradWeights', 'gradBias',
'bias')
parallel_table = nn.ParallelTable()
parallel_table:add(perceptronUpper)
parallel_table:add(perceptronLower)
perceptron = nn.Sequential()
perceptron:add(parallel_table)
perceptron:add(nn.CosineDistance())
Run Code Online (Sandbox Code Playgroud)
如果我有一个需要1个元素的梯度更新函数,这个架构非常有效.如何修改它以让它管理一个小批量?
编辑:我可能应该使用nn.Sequencer()类,通过修改我的代码的最后两行:
perceptron:add(nn.Sequencer(parallel_table))
perceptron:add(nn.Sequencer(nn.CosineDistance())).
Run Code Online (Sandbox Code Playgroud)
你们有什么感想?
每个nn模块都可以使用小批量。有些仅适用于小批量,例如(Spatial)BatchNormalization。模块知道其输入必须包含多少个维度(假设为 D),并且如果模块接收 D+1 维张量,则它假定第一个维度是批量维度。例如,查看nn.Linear模块文档:
forward(input) 中给出的输入张量必须是向量(1D 张量)或矩阵(2D 张量)。如果输入是矩阵,则假定每一行是给定批次的输入样本。
function table_of_tensors_to_batch(tbl)
local batch = torch.Tensor(#tbl, unpack(tbl[1]:size():totable()))
for i = 1, #tbl do
batch[i] = tbl[i]
end
return batch
end
inputs = {
torch.Tensor(5):fill(1),
torch.Tensor(5):fill(2),
torch.Tensor(5):fill(3),
}
input_batch = table_of_tensors_to_batch(inputs)
linear = nn.Linear(5, 2)
output_batch = linear:forward(input_batch)
print(input_batch)
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
[torch.DoubleTensor of size 3x5]
print(output_batch)
0,3128 -1,1384
0,7382 -2,1815
1,1637 -3,2247
[torch.DoubleTensor of size 3x2]
Run Code Online (Sandbox Code Playgroud)
nn.Sequential好的,但是容器( 、nn.Paralel和nn.ParallelTable其他)呢?容器本身不处理输入,它只是将输入(或其相应部分)发送到其包含的相应模块。ParallelTable例如,简单地将第 i 个成员模块应用于第 i 个输入表元素。因此,如果您希望它处理批次,则每个 input[i] (输入是一个表)必须是具有如上所述的批次维度的张量。
input_number = 5
output_number = 2
inputs1 = {
torch.Tensor(5):fill(1),
torch.Tensor(5):fill(2),
torch.Tensor(5):fill(3),
}
inputs2 = {
torch.Tensor(5):fill(4),
torch.Tensor(5):fill(5),
torch.Tensor(5):fill(6),
}
input1_batch = table_of_tensors_to_batch(inputs1)
input2_batch = table_of_tensors_to_batch(inputs2)
input_batch = {input1_batch, input2_batch}
output_batch = perceptron:forward(input_batch)
print(input_batch)
{
1 : DoubleTensor - size: 3x5
2 : DoubleTensor - size: 3x5
}
print(output_batch)
0,6490
0,9757
0,9947
[torch.DoubleTensor of size 3]
target_batch = torch.Tensor({1, 0, 1})
criterion = nn.MSECriterion()
err = criterion:forward(output_batch, target_batch)
gradCriterion = criterion:backward(output_batch, target_batch)
perceptron:zeroGradParameters()
perceptron:backward(input_batch, gradCriterion)
Run Code Online (Sandbox Code Playgroud)
那为什么会有呢nn.Sequencer?可以用它来代替吗?是的,但强烈不建议这样做。Sequencer 采用序列表并将模块独立地应用于表中的每个元素,不会提供加速。此外,它必须复制该模块,因此这种“批处理模式”的效率比在线(非批处理)训练要低得多。定序器被设计为循环网络的一部分,在您的情况下使用它没有意义。
| 归档时间: |
|
| 查看次数: |
1577 次 |
| 最近记录: |