Tet*_*wex 3 matlab filtering image image-processing convolution
我被赋予了为3x3矩阵创建图像过滤功能的任务,其结果必须等于conv2.我写过这个函数,但是它错误地过滤了图像:
function [ image ] = Func134( img,matrix )
image=img;
len=length(img)
for i=2:1:len-1
for j=2:1:len-1
value=0;
for g=-1:1:1
for l=-1:1:1
value=value+img(i+g,j+l)*matrix(g+2,l+2);
end
end
image(i,j)=value;
end
end
i=1:1:length
image(i,1)=image(i,2)
image(i,len)=image(i,len-1)
image(1,i)=image(2,i)
image(len,i)=image(len-1,i)
end
Run Code Online (Sandbox Code Playgroud)
过滤矩阵为[3,10,3; 0,0,0; -3,-10,-3]
请帮助弄清楚我的代码有什么问题.
我得到的一些示例结果conv2和我的代码如下所示.

首先,这条线没有意义:
i=1:1:length;
Run Code Online (Sandbox Code Playgroud)
我认为你的意思是使用len而不是length结束索引:
i=1:1:len;
Run Code Online (Sandbox Code Playgroud)
现在提到你的代码,它是正确的,但你正在做的是相关而不是卷积.在2D卷积中,您必须执行内核/掩码的180度旋转,然后执行加权求和.因此,如果要使用相同的结果conv2,必须在调用之前预先旋转蒙版.
mask = [3,10,3;0,0,0;-3,-10,-3]
mask_flip = mask(end:-1:1,end:-1:1);
out = conv2(img, mask, 'same');
Run Code Online (Sandbox Code Playgroud)
mask_flip包含180度旋转的内核.我们使用该'same'标志来确保结果的输出大小与输入的大小相同.但是,在使用时conv2,我们假设图像的边框是零填充的.您的代码只是将原始图像的边框像素复制到生成的图像中.这被称为复制行为,但这不是原生的行为conv2. conv2假设边框像素是如前所述的零填充,所以我建议你做的是创建两个额外的图像,一个是输出图像,其中包含2行和2个列,另一个是输入图像,即与输出图像大小相同,但您将输入图像放在此矩阵中.接下来,对此新图像执行过滤,将生成的过滤像素放在输出图像中,然后裁剪此结果.我决定创建一个新的填充输入图像,以保持大部分代码完好无损.
我还建议你废除length这里的使用.使用size,而不是确定图像的尺寸.这样的东西会起作用:
function [ image ] = Func134( img,matrix )
[rows,cols] = size(img); %// Change
%// New - Create a padded matrix that is the same class as the input
new_img = zeros(rows+2,cols+2);
new_img = cast(new_img, class(img));
%// New - Place original image in padded result
new_img(2:end-1,2:end-1) = img;
%// Also create new output image the same size as the padded result
image = zeros(size(new_img));
image = cast(image, class(img));
for i=2:1:rows+1 %// Change
for j=2:1:cols+1 %// Change
value=0;
for g=-1:1:1
for l=-1:1:1
value=value+new_img(i+g,j+l)*matrix(g+2,l+2); %// Change
end
end
image(i,j)=value;
end
end
%// Change
%// Crop the image and remove the extra border pixels
image = image(2:end-1,2:end-1);
end
Run Code Online (Sandbox Code Playgroud)
为了比较,我已经生成了这个随机矩阵:
>> rng(123);
>> A = rand(10,10)
A =
0.6965 0.3432 0.6344 0.0921 0.6240 0.1206 0.6693 0.0957 0.3188 0.7050
0.2861 0.7290 0.8494 0.4337 0.1156 0.8263 0.5859 0.8853 0.6920 0.9954
0.2269 0.4386 0.7245 0.4309 0.3173 0.6031 0.6249 0.6272 0.5544 0.3559
0.5513 0.0597 0.6110 0.4937 0.4148 0.5451 0.6747 0.7234 0.3890 0.7625
0.7195 0.3980 0.7224 0.4258 0.8663 0.3428 0.8423 0.0161 0.9251 0.5932
0.4231 0.7380 0.3230 0.3123 0.2505 0.3041 0.0832 0.5944 0.8417 0.6917
0.9808 0.1825 0.3618 0.4264 0.4830 0.4170 0.7637 0.5568 0.3574 0.1511
0.6848 0.1755 0.2283 0.8934 0.9856 0.6813 0.2437 0.1590 0.0436 0.3989
0.4809 0.5316 0.2937 0.9442 0.5195 0.8755 0.1942 0.1531 0.3048 0.2409
0.3921 0.5318 0.6310 0.5018 0.6129 0.5104 0.5725 0.6955 0.3982 0.3435
Run Code Online (Sandbox Code Playgroud)
现在运行我们上面谈到的内容:
mask = [3,10,3;0,0,0;-3,-10,-3];
mask_flip = mask(end:-1:1,end:-1:1);
B = Func134(A,mask);
C = conv2(A, mask_flip,'same');
Run Code Online (Sandbox Code Playgroud)
我们为您的函数和输出提供以下内容conv2:
>> B
B =
-5.0485 -10.6972 -11.9826 -7.2322 -4.9363 -10.3681 -10.9944 -12.6870 -12.5618 -12.0295
4.4100 0.1847 -2.2030 -2.7377 0.6031 -3.7711 -2.5978 -5.8890 -2.9036 2.7836
-0.6436 6.6134 4.2122 -0.7822 -2.3282 1.6488 0.4420 2.2619 4.2144 3.2372
-4.8046 -1.0665 0.1568 -1.5907 -4.6943 0.3036 0.4399 4.3466 -2.5859 -3.4849
-0.7529 -5.5344 1.3900 3.1715 2.9108 4.6771 7.0247 1.7062 -3.9277 -0.6497
-1.9663 2.4536 4.2516 2.2266 3.6084 0.6432 -1.0581 -3.4674 5.3815 6.1237
-0.9296 5.1244 0.8912 -7.7325 -10.2260 -6.4585 -1.4298 6.2675 10.1657 5.3225
3.9511 -1.7869 -1.9199 -5.0832 -3.2932 -2.9853 5.5304 5.9034 1.4683 -0.7394
1.8580 -3.8938 -3.9216 3.8254 5.4139 1.8404 -4.3850 -7.4159 -4.9894 -0.5096
6.4040 7.6395 7.3643 11.8812 10.6537 10.8957 5.0278 3.0277 4.2295 3.3229
>> C
C =
-5.0485 -10.6972 -11.9826 -7.2322 -4.9363 -10.3681 -10.9944 -12.6870 -12.5618 -12.0295
4.4100 0.1847 -2.2030 -2.7377 0.6031 -3.7711 -2.5978 -5.8890 -2.9036 2.7836
-0.6436 6.6134 4.2122 -0.7822 -2.3282 1.6488 0.4420 2.2619 4.2144 3.2372
-4.8046 -1.0665 0.1568 -1.5907 -4.6943 0.3036 0.4399 4.3466 -2.5859 -3.4849
-0.7529 -5.5344 1.3900 3.1715 2.9108 4.6771 7.0247 1.7062 -3.9277 -0.6497
-1.9663 2.4536 4.2516 2.2266 3.6084 0.6432 -1.0581 -3.4674 5.3815 6.1237
-0.9296 5.1244 0.8912 -7.7325 -10.2260 -6.4585 -1.4298 6.2675 10.1657 5.3225
3.9511 -1.7869 -1.9199 -5.0832 -3.2932 -2.9853 5.5304 5.9034 1.4683 -0.7394
1.8580 -3.8938 -3.9216 3.8254 5.4139 1.8404 -4.3850 -7.4159 -4.9894 -0.5096
6.4040 7.6395 7.3643 11.8812 10.6537 10.8957 5.0278 3.0277 4.2295 3.3229
Run Code Online (Sandbox Code Playgroud)