我正在尝试使用scikit-learn中的f-score作为xgb分类器中的评估指标.这是我的代码:
clf = xgb.XGBClassifier(max_depth=8, learning_rate=0.004,
n_estimators=100,
silent=False, objective='binary:logistic',
nthread=-1, gamma=0,
min_child_weight=1, max_delta_step=0, subsample=0.8,
colsample_bytree=0.6,
base_score=0.5,
seed=0, missing=None)
scores = []
predictions = []
for train, test, ans_train, y_test in zip(trains, tests, ans_trains, ans_tests):
clf.fit(train, ans_train, eval_metric=xgb_f1,
eval_set=[(train, ans_train), (test, y_test)],
early_stopping_rounds=900)
y_pred = clf.predict(test)
predictions.append(y_pred)
scores.append(f1_score(y_test, y_pred))
def xg_f1(y, t):
t = t.get_label()
return "f1", f1_score(t, y)
Run Code Online (Sandbox Code Playgroud)
但是有一个错误:
无法处理二进制和连续的混合
问题是f1_score试图比较非二进制与二进制目标,默认情况下,此方法进行二进制平均。来自文档“ average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', 'weighted']”。
无论如何,错误是说您的预测是这样连续的,[0.001, 0.7889,0.33...]但您的目标是 binary [0,1,0...]。因此,如果您知道阈值,我建议您在将结果发送到f1_score函数之前对其进行预处理。阈值的通常值为0.5。
评估函数的测试示例。不再输出错误:
def xgb_f1(y, t, threshold=0.5):
t = t.get_label()
y_bin = [1. if y_cont > threshold else 0. for y_cont in y] # binarizing your output
return 'f1',f1_score(t,y_bin)
Run Code Online (Sandbox Code Playgroud)
正如@smci 所建议的,less_verbose/more_efficient 解决方案可能是:
def xgb_f1(y, t, threshold=0.5):
t = t.get_label()
y_bin = (y > threshold).astype(int) # works for both type(y) == <class 'numpy.ndarray'> and type(y) == <class 'pandas.core.series.Series'>
return 'f1',f1_score(t,y_bin)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
8802 次 |
| 最近记录: |