Ben*_*ben 34 python text-classification multilabel-classification tensorflow
文本数据被组织为具有20,000个元素的向量,如[2,1,0,0,5,....,0].第i个元素表示文本中第i个单词的频率.
地面实况标签数据也表示为具有4,000个元素的向量,如[0,0,1,0,1,......,0].第i个元素指示第i个标签是否是文本的肯定标签.文本的标签数量因文本而异.
我有一个单标签文本分类的代码.
如何编辑以下代码进行多标签文本分类?
特别是,我想知道以下几点.
谢谢.
import tensorflow as tf
# hidden Layer
class HiddenLayer(object):
def __init__(self, input, n_in, n_out):
self.input = input
w_h = tf.Variable(tf.random_normal([n_in, n_out],mean = 0.0,stddev = 0.05))
b_h = tf.Variable(tf.zeros([n_out]))
self.w = w_h
self.b = b_h
self.params = [self.w, self.b]
def output(self):
linarg = tf.matmul(self.input, self.w) + self.b
self.output = tf.nn.relu(linarg)
return self.output
# output Layer
class OutputLayer(object):
def __init__(self, input, n_in, n_out):
self.input = input
w_o = tf.Variable(tf.random_normal([n_in, n_out], mean = 0.0, stddev = 0.05))
b_o = tf.Variable(tf.zeros([n_out]))
self.w = w_o
self.b = b_o
self.params = [self.w, self.b]
def output(self):
linarg = tf.matmul(self.input, self.w) + self.b
self.output = tf.nn.relu(linarg)
return self.output
# model
def model():
h_layer = HiddenLayer(input = x, n_in = 20000, n_out = 1000)
o_layer = OutputLayer(input = h_layer.output(), n_in = 1000, n_out = 4000)
# loss function
out = o_layer.output()
cross_entropy = -tf.reduce_sum(y_*tf.log(out + 1e-9), name='xentropy')
# regularization
l2 = (tf.nn.l2_loss(h_layer.w) + tf.nn.l2_loss(o_layer.w))
lambda_2 = 0.01
# compute loss
loss = cross_entropy + lambda_2 * l2
# compute accuracy for single label classification task
correct_pred = tf.equal(tf.argmax(out, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, "float"))
return loss, accuracy
Run Code Online (Sandbox Code Playgroud)
jor*_*emf 14
您必须在其他方面使用交叉熵函数的变体来支持多标记分类.如果您的输出少于一千,您应该使用sigmoid_cross_entropy_with_logits,在您拥有4000输出的情况下,您可以考虑候选采样,因为它比前一个快.
如何使用TensorFlow计算精度.
这取决于您的问题以及您想要实现的目标.如果您不想错过图像中的任何对象,那么如果分类器可以正确但只有一个,那么您应该将整个图像视为错误.您还可以考虑错过或错过分类的对象是错误.后者我认为它由sigmoid_cross_entropy_with_logits支持.
如何设置判断标签是正面还是负面的阈值.例如,如果输出为[0.80,0.43,0.21,0.01,0.32]且基本事实为[1,1,0,0,1],则得分超过0.25的标签应判断为正数.
阈值是一种方法,你必须决定哪一个.但这是某种黑客,而不是真正的多重分类.为此你需要我之前说过的前面的功能.
Alo*_*yak 14
将relu改为输出层的sigmoid.将交叉熵损失修改为S形交叉熵损失的显式数学公式(显式损失在我的情况下起作用/张量流的版本)
import tensorflow as tf
# hidden Layer
class HiddenLayer(object):
def __init__(self, input, n_in, n_out):
self.input = input
w_h = tf.Variable(tf.random_normal([n_in, n_out],mean = 0.0,stddev = 0.05))
b_h = tf.Variable(tf.zeros([n_out]))
self.w = w_h
self.b = b_h
self.params = [self.w, self.b]
def output(self):
linarg = tf.matmul(self.input, self.w) + self.b
self.output = tf.nn.relu(linarg)
return self.output
# output Layer
class OutputLayer(object):
def __init__(self, input, n_in, n_out):
self.input = input
w_o = tf.Variable(tf.random_normal([n_in, n_out], mean = 0.0, stddev = 0.05))
b_o = tf.Variable(tf.zeros([n_out]))
self.w = w_o
self.b = b_o
self.params = [self.w, self.b]
def output(self):
linarg = tf.matmul(self.input, self.w) + self.b
#changed relu to sigmoid
self.output = tf.nn.sigmoid(linarg)
return self.output
# model
def model():
h_layer = HiddenLayer(input = x, n_in = 20000, n_out = 1000)
o_layer = OutputLayer(input = h_layer.output(), n_in = 1000, n_out = 4000)
# loss function
out = o_layer.output()
# modified cross entropy to explicit mathematical formula of sigmoid cross entropy loss
cross_entropy = -tf.reduce_sum( ( (y_*tf.log(out + 1e-9)) + ((1-y_) * tf.log(1 - out + 1e-9)) ) , name='xentropy' )
# regularization
l2 = (tf.nn.l2_loss(h_layer.w) + tf.nn.l2_loss(o_layer.w))
lambda_2 = 0.01
# compute loss
loss = cross_entropy + lambda_2 * l2
# compute accuracy for single label classification task
correct_pred = tf.equal(tf.argmax(out, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, "float"))
return loss, accuracy
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
19032 次 |
最近记录: |