我可以使用C/C++预处理器添加数字吗?

use*_*904 13 c c++ preprocessor metaprogramming

对于一些基地.基数1甚至.某种复杂的替代.

此外,当然,在现实生产代码中这样做并不是一个好主意.我只是出于好奇而被问到.

Jam*_*lis 12

预处理器对预处理令牌进行操作,并且唯一一次评估数字是在评估#if#elif指令期间.除此之外,预处理期间数字不是真正的数字; 它们被归类为预处理数字标记,实际上不是数字.

您可以使用标记连接来评估基本算术:

#define ADD_0_0 0
#define ADD_0_1 1
#define ADD_1_0 1
#define ADD_1_1 2

#define ADD(x, y) ADD##_##x##_##y

ADD(1, 0) // expands to 1
ADD(1, 1) // expands to 2
Run Code Online (Sandbox Code Playgroud)

但实际上,没有理由这样做,这样做是愚蠢的(你必须定义大量的宏才能使它更加有用).

将宏扩展为可由编译器评估的整数常量表达式会更为明智:

#define ADD(x, y) ((x) + (y))

ADD(1, 1) // expands to ((1) + (1))
Run Code Online (Sandbox Code Playgroud)

编译器将能够评估1 + 1表达式.

  • 我总是喜欢看##做一些真正的工作. (2认同)

Agn*_*kas 11

你可以比较容易地编写宏,它在二进制中添加两个整数.例如 - 以二进制形式对两个4位整数求和的宏:

#include "stdio.h"

// XOR truth table
#define XOR_0_0 0
#define XOR_0_1 1
#define XOR_1_0 1
#define XOR_1_1 0

// OR truth table
#define OR_0_0 0
#define OR_0_1 1
#define OR_1_0 1
#define OR_1_1 1

// AND truth table
#define AND_0_0 0
#define AND_0_1 0
#define AND_1_0 0
#define AND_1_1 1

// concatenation macros
#define XOR_X(x,y) XOR_##x##_##y
#define   OR_X(x,y) OR_##x##_##y
#define  AND_X(x,y) AND_##x##_##y
#define OVERFLOW_X(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) OVERFLOW_##rc1 (rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)

// stringification macros
#define STR_X(x) #x
#define STR(x) STR_X(x)

// boolean operators
#define XOR(x,y) XOR_X(x,y)
#define   OR(x,y) OR_X(x,y)
#define  AND(x,y) AND_X(x,y)

// carry_bit + bit1 + bit2
#define BIT_SUM(carry,bit1,bit2) XOR(carry, XOR(bit1,bit2))
// carry_bit + carry_bit_of(bit1 + bit2)
#define CARRY_SUM(carry,bit1,bit2) OR(carry, AND(bit1,bit2))

// do we have overflow or maybe result perfectly fits into 4 bits ?
#define OVERFLOW_0(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) SHOW_RESULT(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define OVERFLOW_1(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) SHOW_OVERFLOW(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)

// draft-horse macros which performs addition of two 4-bit integers
#define ADD_BIN_NUM(a1,a2,a3,a4, b1,b2,b3,b4) ADD_BIN_NUM_4(0,0,0,0, 0,0,0,0, a1,a2,a3,a4, b1,b2,b3,b4)
#define ADD_BIN_NUM_4(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) ADD_BIN_NUM_3(rc1,rc2,rc3,AND(CARRY_SUM(0,a4,b4),OR(a4,b4)), rb1,rb2,rb3,BIT_SUM(0,a4,b4), a1,a2,a3,a4, b1,b2,b3,b4)
#define ADD_BIN_NUM_3(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) ADD_BIN_NUM_2(rc1,rc2,AND(CARRY_SUM(rc4,a3,b3),OR(a3,b3)),rc4, rb1,rb2,BIT_SUM(rc4,a3,b3),rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define ADD_BIN_NUM_2(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) ADD_BIN_NUM_1(rc1,AND(CARRY_SUM(rc3,a2,b2),OR(a2,b2)),rc3,rc4, rb1,BIT_SUM(rc3,a2,b2),rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define ADD_BIN_NUM_1(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)      OVERFLOW(AND(CARRY_SUM(rc2,a1,b1),OR(a1,b1)),rc2,rc3,rc4, BIT_SUM(rc2,a1,b1),rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define OVERFLOW(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) OVERFLOW_X(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4)
#define   SHOW_RESULT(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) STR(a1) STR(a2) STR(a3) STR(a4) " + " STR(b1) STR(b2) STR(b3) STR(b4) " = " STR(rb1) STR(rb2) STR(rb3) STR(rb4)
#define   SHOW_OVERFLOW(rc1,rc2,rc3,rc4, rb1,rb2,rb3,rb4, a1,a2,a3,a4, b1,b2,b3,b4) STR(a1) STR(a2) STR(a3) STR(a4) " + " STR(b1) STR(b2) STR(b3) STR(b4) " = overflow"

void main()
{
    printf("%s\n", 
        ADD_BIN_NUM(
                    0,0,0,1, // first  4-bit int
                    1,0,1,1) // second 4-bit int
                    );

    printf("%s\n", 
        ADD_BIN_NUM(
                    0,1,0,0, // first  4-bit int
                    0,1,0,1) // second 4-bit int
                );

    printf("%s\n", 
        ADD_BIN_NUM(
                    1,0,1,1, // first  4-bit int
                    0,1,1,0) // second 4-bit int
                );
}
Run Code Online (Sandbox Code Playgroud)

可以轻松扩展此宏,以添加两个8位或16位甚至32位的整数.所以基本上我们需要的只是令牌连接和替换规则,以便用宏实现惊人的结果.

编辑: 我已经改变了结果的格式化,更重要的是 - 我添加了溢出检查.

HTH!


Chr*_*ich 5

我知道它不是预处理器,但如果有帮助,你可以用模板来做.也许您可以将它与宏结合使用来实现您的需求.

#include <iostream>
using namespace std;

template <int N, int M>
struct Add
{
    static const int Value = N + M;
};

int main()
{
    cout << Add<4, 5>::Value << endl;
    return 0;
}
Run Code Online (Sandbox Code Playgroud)

  • 为什么不在`Add`中使用`Value = N + M`? (2认同)

Isa*_* To 5

很有可能在预处理器中进行有界整数加法.并且,它实际上需要的次数比人们真正希望的要多,即,只是((2) + (3))在程序中的替代方案不起作用.(例如,您不能调用变量x((2)+(3))).这个想法很简单:将增加转换为增量,你不介意(太多)将它们全部列出来.例如,

#define INC(x) INC_ ## x
#define INC_0 1
#define INC_1 2
#define INC_2 3
#define INC_3 4
#define INC_4 5
#define INC_5 6
#define INC_6 7
#define INC_7 8
#define INC_8 9
#define INC_9 10
INC(7) // => 8
Run Code Online (Sandbox Code Playgroud)

现在我们知道如何添加到最多1.

#define ADD(x, y) ADD_ ## x(y)
#define ADD_0(x) x
#define ADD_1(x) INC(x)
ADD(0, 2) // => 2
ADD(1, 2) // => 3
Run Code Online (Sandbox Code Playgroud)

要添加更大的数字,您需要某种"递归".

#define ADD_2(x) ADD_1(INC(x))
#define ADD_3(x) ADD_2(INC(x))
#define ADD_4(x) ADD_3(INC(x))
#define ADD_5(x) ADD_4(INC(x))
#define ADD_6(x) ADD_5(INC(x))
#define ADD_7(x) ADD_6(INC(x))
#define ADD_8(x) ADD_7(INC(x))
#define ADD_9(x) ADD_8(INC(x))
#define ADD_10(x) ADD_9(INC(x))
ADD(5, 2) // => 7
Run Code Online (Sandbox Code Playgroud)

但是,必须要小心.例如,以下不起作用.

#define ADD_2(x) INC(ADD_1(x))
ADD(2, 2) // => INC_ADD_1(2)
Run Code Online (Sandbox Code Playgroud)

对于此类技巧的任何扩展使用,Boost预处理器是您的朋友.