估计python中均匀随机变量之和的概率密度

pik*_*eon 8 python statistics numpy distribution montecarlo

我有两个随机变量X和Y,它们均匀分布在单纯形式上:单

我想评估他们总和的密度:

在此输入图像描述

在评估上述积分后,我的最终目标是计算以下积分: 在此输入图像描述

为了计算第一个积分,我在单形中生成均匀分布的点,然后检查它们是否属于上述积分中的所需区域,并取得点的分数来评估上述密度.

一旦我计算出上述密度,我就按照类似的程序计算上面的对数积分来计算它的值.然而,这是非常低效的,并花了很多时间这样3-4个小时.任何人都可以建议我在Python中解决这个问题的有效方法吗?我正在使用Numpy包.

这是代码

import numpy as np
import math
import random
import numpy.random as nprnd
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
#This function checks if the point x lies the simplex and the negative simplex shifted by z
def InreqSumSimplex(x,z):
    dim=len(x)
    testShiftSimpl= all(z[i]-1 <= x[i] <= z[i] for i in range(0,dim)) and (sum(x) >= sum(z)-1)
    return int(testShiftSimpl)

def InreqDiffSimplex(x,z):
    dim=len(x)
    testShiftSimpl= all(z[i] <= x[i] <= z[i]+1 for i in range(0,dim)) and (sum(x) <= sum(z)+1)
    return int(testShiftSimpl)
#This is for the density X+Y
def DensityEvalSum(z,UniformCube):
    dim=len(z)
    Sum=0
    for gen in UniformCube:
        Exponential=[-math.log(i) for i in gen] #This is exponentially distributed
        x=[i/sum(Exponential) for i in Exponential[0:dim]] #x is now uniformly distributed on simplex

        Sum+=InreqSumSimplex(x,z)

    Sum=Sum/numsample

    FunVal=(math.factorial(dim))*Sum;
    if FunVal<0.00001:
        return 0.0
    else:
        return -math.log(FunVal)
#This is for the density X-Y
def DensityEvalDiff(z,UniformCube):
    dim=len(z)
    Sum=0
    for gen in UniformCube:
        Exponential=[-math.log(i) for i in gen]
        x=[i/sum(Exponential) for i in Exponential[0:dim]]

    Sum+=InreqDiffSimplex(x,z)

    Sum=Sum/numsample

    FunVal=(math.factorial(dim))*Sum;
    if FunVal<0.00001:
        return 0.0
    else:
        return -math.log(FunVal)
def EntropyRatio(dim):    
    UniformCube1=np.random.random((numsample,dim+1)); 
    UniformCube2=np.random.random((numsample,dim+1))

    IntegralSum=0; IntegralDiff=0

    for gen1,gen2 in zip(UniformCube1,UniformCube2):

        Expo1=[-math.log(i) for i in gen1];        Expo2=[-math.log(i) for i in gen2]

        Sumz=[ (i/sum(Expo1)) + j/sum(Expo2) for i,j in zip(Expo1[0:dim],Expo2[0:dim])] #Sumz is now disbtributed as X+Y

        Diffz=[ (i/sum(Expo1)) - j/sum(Expo2) for i,j in zip(Expo1[0:dim],Expo2[0:dim])] #Diffz is now distributed as X-Y

    UniformCube=np.random.random((numsample,dim+1))

    IntegralSum+=DensityEvalSum(Sumz,UniformCube) ; IntegralDiff+=DensityEvalDiff(Diffz,UniformCube)

    IntegralSum= IntegralSum/numsample; IntegralDiff=IntegralDiff/numsample

    return ( (IntegralDiff +math.log(math.factorial(dim)))/ ((IntegralSum +math.log(math.factorial(dim)))) )

Maxdim=11
dimlist=range(2,Maxdim)
Ratio=len(dimlist)*[0]
numsample=10000

for i in range(len(dimlist)):
    Ratio[i]=EntropyRatio(dimlist[i])
Run Code Online (Sandbox Code Playgroud)

Sev*_*eux 2

不确定这是否是您问题的答案,但让我们开始吧

首先,这里是一些代码示例和讨论如何正确地从 Dirichlet(n) (又名单纯形)中采样,viagammavariate()或 via-log(U)就像您所做的那样,但对潜在的极端情况进行了适当的处理,链接

正如我所看到的,您的代码的问题是,例如,对于采样维度 = 2 单纯形,您将获得三个(!)统一数字,但在执行列表理解时跳过一个x。这是错误的。要对 n 维 Dirichlet 进行采样,您应该精确地获得nU(0,1) 并进行变换(或n来自 gammavariate 的样本)。

但是,最好的解决方案可能只是使用numpy.random.dirichlet(),它是用 C 编写的,可能是最快的,请参阅链接

最后一点,以我的愚见,你没有正确估计log(PDF(X+Z))。好吧,你发现了一些,但是PDF(X+Z)现在是什么?

做这个

testShiftSimpl= all(z[i]-1 <= x[i] <= z[i] for i in range(0,dim)) and (sum(x) >= sum(z)-1)
return int(testShiftSimpl)
Run Code Online (Sandbox Code Playgroud)

看起来像PDF?你是怎么得到它的?

简单测试:PDF(X+Z)整个X+Z区域的整合。产生1了吗?

更新

看起来我们可能有不同的想法,我们称之为单纯形,狄利克雷等。我非常同意这个定义,在d昏暗的空间中我们d有点,d-1单纯形是连接顶点的凸包。由于坐标之间的关系,单纯形维数总是比空间小一。在最简单的情况下,d=2, 1-单纯形是连接点 (1,0) 和 (0,1) 的线段,从狄利克雷分布我得到了图片

在此输入图像描述

d在=3 和 2-单纯形的情况下,我们有三角形连接点 (1,0,0)、(0,1,0) 和 (0,0,1)

在此输入图像描述

代码,Python

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

import math
import random

def simplex_sampling(d):
    """
    Sample one d-dim point from Dirichet distribution
    """
    r = []
    sum = 0.0

    for k in range(0, d):
        x = random.random()
        if x == 0.0:
            return make_corner_sample(d, k)

        t = -math.log(x)
        r.append(t)
        sum += t

    norm = 1.0 / sum

    for k in range(0, d):
        r[k] *= norm

    return r

def make_corner_sample(d, k):
    """
    U(0,1) number k is zero, it is a corner point in simplex
    """
    r = []
    for i in range(0, d):
        if i == k:
            r.append(1.0)
        else:
            r.append(0.0)

    return r

N = 500 # numer of points to plot
d = 3   # dimension of the space, 2 or 3

x = []
y = []
z = []

for k in range(0, N):
    pt = simplex_sampling(d)

    x.append(pt[0])
    y.append(pt[1])
    if d > 2:
        z.append(pt[2])

if d == 2:
    plt.scatter(x, y, alpha=0.1)
else:
    fig = plt.figure()
    ax  = fig.add_subplot(111, projection='3d')
    ax.scatter(x, y, z, alpha=0.1)

    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')
    ax.set_zlabel('Z Label')

plt.show()
Run Code Online (Sandbox Code Playgroud)