如何使用GridSearchCV输出进行scikit预测?

use*_*827 11 python scikit-learn grid-search

在以下代码中:

# Load dataset
iris = datasets.load_iris()
X, y = iris.data, iris.target

rf_feature_imp = RandomForestClassifier(100)
feat_selection = SelectFromModel(rf_feature_imp, threshold=0.5)

clf = RandomForestClassifier(5000)

model = Pipeline([
          ('fs', feat_selection), 
          ('clf', clf), 
        ])

 params = {
    'fs__threshold': [0.5, 0.3, 0.7],
    'fs__estimator__max_features': ['auto', 'sqrt', 'log2'],
    'clf__max_features': ['auto', 'sqrt', 'log2'],
 }

 gs = GridSearchCV(model, params, ...)
 gs.fit(X,y)
Run Code Online (Sandbox Code Playgroud)

什么应该用于预测?

  • gs
  • gs.best_estimator_?要么
  • gs.best_estimator_.named_steps['clf']

这3个有什么区别?

Dav*_*ust 17

gs.predict(X_test)相当于gs.best_estimator_.predict(X_test).使用其中任何一个,X_test将通过整个管道传递,它将返回预测.

gs.best_estimator_.named_steps['clf'].predict()然而,这只是管道的最后阶段.要使用它,必须已经执行了功能选择步骤.这只有在您之前运行过您的数据时才有效gs.best_estimator_.named_steps['fs'].transform()

生成预测的三种等效方法如下所示:

gs直接使用.

pred = gs.predict(X_test)
Run Code Online (Sandbox Code Playgroud)

best_estimator_.

pred = gs.best_estimator_.predict(X_test)
Run Code Online (Sandbox Code Playgroud)

在管道中调用每个步骤.

X_test_fs = gs.best_estimator_.named_steps['fs'].transform(X_test)
pred = gs.best_estimator_.named_steps['clf'].predict(X_test_fs)
Run Code Online (Sandbox Code Playgroud)