ytk*_*ytk 24 python dataframe pandas
我有一个出租车数据的数据框,有两列,如下所示:
Neighborhood Borough Time
Midtown Manhattan X
Melrose Bronx Y
Grant City Staten Island Z
Midtown Manhattan A
Lincoln Square Manhattan B
Run Code Online (Sandbox Code Playgroud)
基本上,每行代表该行政区附近的出租车.现在,我想在每个行政区找到前5个街区,拥有最多的皮卡.我试过这个:
df['Neighborhood'].groupby(df['Borough']).value_counts()
Run Code Online (Sandbox Code Playgroud)
这给了我这样的东西:
borough
Bronx High Bridge 3424
Mott Haven 2515
Concourse Village 1443
Port Morris 1153
Melrose 492
North Riverdale 463
Eastchester 434
Concourse 395
Fordham 252
Wakefield 214
Kingsbridge 212
Mount Hope 200
Parkchester 191
......
Staten Island Castleton Corners 4
Dongan Hills 4
Eltingville 4
Graniteville 4
Great Kills 4
Castleton 3
Woodrow 1
Run Code Online (Sandbox Code Playgroud)
如何过滤它以便我只获得前5个?我知道有几个问题有类似的标题,但它们对我的情况没有帮助.
jez*_*ael 28
我想你可以使用nlargest
- 你可以1
改为5
:
s = df['Neighborhood'].groupby(df['Borough']).value_counts()
print s
Borough
Bronx Melrose 7
Manhattan Midtown 12
Lincoln Square 2
Staten Island Grant City 11
dtype: int64
print s.groupby(level=[0,1]).nlargest(1)
Bronx Bronx Melrose 7
Manhattan Manhattan Midtown 12
Staten Island Staten Island Grant City 11
dtype: int64
Run Code Online (Sandbox Code Playgroud)
正在创建其他列,指定级别信息
Ale*_*der 18
您可以通过使用'nlargest'稍微扩展原始groupby来一行完成此操作:
>>> df.groupby(['Borough', 'Neighborhood']).Neighborhood.value_counts().nlargest(5)
Borough Neighborhood Neighborhood
Bronx Melrose Melrose 1
Manhattan Midtown Midtown 1
Manhatten Lincoln Square Lincoln Square 1
Midtown Midtown 1
Staten Island Grant City Grant City 1
dtype: int64
Run Code Online (Sandbox Code Playgroud)
Mit*_*ril 14
df.groupby(['Borough']).Neighborhood.value_counts().groupby(level=0, group_keys=False).head(5)
Run Code Online (Sandbox Code Playgroud)
.value_counts().nlargest(5)
在其他答案中只给你一组前五名,对我来说也没有意义。group_keys=False
以避免重复索引value_counts()
已经排序了,只需要head(5)
小智 5
df['Neighborhood'].groupby(df['Borough']).value_counts().head(5)
Run Code Online (Sandbox Code Playgroud)
head()
获取数据框中的前 5 行。
归档时间: |
|
查看次数: |
29331 次 |
最近记录: |