我有一个包含字符串的列表列表.每个子列表的第一个字符串描述了以下字符串所属的类别.我想得到一个(长格式)数据框,其中一列用于类别,一列用于内容.如何从此列表中获取长格式的数据框:
mylist <- list(
c("A","lorem","ipsum"),
c("B","sed", "eiusmod", "tempor" ,"inci"),
c("C","aliq", "ex", "ea"))
> mylist
[[1]]
[1] "A" "lorem" "ipsum"
[[2]]
[1] "B" "sed" "eiusmod" "tempor" "incidunt"
[[3]]
[1] "C" "aliquid" "ex" "ea"
Run Code Online (Sandbox Code Playgroud)
它应该看起来像这个数据框架
mydf <- data.frame(cate= c("A","A","B","B","B","B","C","C","C"),
cont= c("lorem","ipsum","sed", "eiusmod", "tempor","inci","aliq", "ex", "ea"))
> mydf
cate cont
1 A lorem
2 A ipsum
3 B sed
4 B eiusmod
5 B tempor
6 B incidunt
7 C aliquid
8 C ex
9 C ea
Run Code Online (Sandbox Code Playgroud)
我已经分开了类别和内容.
cate <- sapply(mylist, "[[",1)
cont <- sapply(mylist, "[", -(1))
Run Code Online (Sandbox Code Playgroud)
如何进行获取mydf?
A5C*_*2T1 13
使用原始列表而不是您创建的拆分对象,可以尝试以下操作:
library(data.table)
setorder(melt(as.data.table(transpose(mylist)),
id.vars = "V1", na.rm = TRUE), V1, variable)[]
# V1 variable value
# 1: A V2 lorem
# 2: A V3 ipsum
# 3: B V2 sed
# 4: B V3 eiusmod
# 5: B V4 tempor
# 6: B V5 inci
# 7: C V2 aliq
# 8: C V3 ex
# 9: C V4 ea
Run Code Online (Sandbox Code Playgroud)
为了好玩,您还可以尝试以下方法之一:
library(dplyr)
library(tidyr)
data_frame(id = seq_along(mylist), mylist) %>%
unnest %>%
group_by(id) %>%
mutate(ind = mylist[1]) %>%
slice(2:n())
Run Code Online (Sandbox Code Playgroud)
library(purrr)
data_frame(
value = mylist %>% map(~ .x[-1]) %>% unlist,
ind = mylist %>% map(~ rep(.x[1], length(.x)-1)) %>% unlist
)
Run Code Online (Sandbox Code Playgroud)
请注意,你会对"purrr"也有一个transpose功能这一事实感到恼火,这意味着如果你也加载了"data.table",你将不得不习惯使用类似的东西,data.table::transpose或者purrr::transpose如果你正在使用那些功能(就像我在原始答案中所做的那样).我没有测试过,但我的猜测是"data.table"仍然是原始列表中最快的.
Her*_*oka 10
我们还可以rep结合OP的帖子中已经创建的变量.
dat <- data.frame(cat=rep(cate, lengths(cont)),
cont=unlist(cont))
Run Code Online (Sandbox Code Playgroud)
因为有一些关于什么是"最佳"答案的讨论(如果有一个,我怀疑),这里有一些基准(如果性能很重要),基于要处理的100000个向量的列表:
Unit: milliseconds
expr min lq mean median uq max neval cld
heroka 56.24516 67.98583 122.1209 82.35606 117.6017 391.8297 50 a
akrun 258.86939 283.10408 363.5425 331.50263 448.9134 578.1818 50 b
ananda 47.72320 61.05269 132.2678 76.22913 218.8286 385.5709 50 a
Run Code Online (Sandbox Code Playgroud)
基准测试代码假设变量cate和cont已创建的,因为这两个解决方案中使用它们.
heroka <- function(){
data.frame(cat=rep(cate, lengths(cont)), cont=unlist(cont))
}
akrun <- function(){
setNames(stack(setNames(cont, cate))[2:1], c('cate', 'cont'))
}
ananda <- function(){
setorder(melt(as.data.table(transpose(mylist)),
id.vars = "V1", na.rm = TRUE), V1, variable)[]
}
mylist <- replicate(100000,c(sample(LETTERS[1:10],1),sample(LETTERS[1:10],sample(5))))
cate <- sapply(mylist, "[[",1)
cont <- sapply(mylist, "[", -(1))
tests <- microbenchmark(
heroka = heroka(),
akrun=akrun(),ananda=ananda(),
times=50
)
Run Code Online (Sandbox Code Playgroud)
我们可以stack在list用'cape' 命名'cont' 的元素之后使用.
setNames(stack(setNames(cont, cate))[2:1], c('cate', 'cont'))
# cate cont
#1 A lorem
#2 A ipsum
#3 B sed
#4 B eiusmod
#5 B tempor
#6 B inci
#7 C aliq
#8 C ex
#9 C ea
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1076 次 |
| 最近记录: |