基于这个转换训练的张量流模型到protobuf我试图保存/恢复TF图没有成功.
这是救星:
with tf.Graph().as_default():
variable_node = tf.Variable(1.0, name="variable_node")
output_node = tf.mul(variable_node, 2.0, name="output_node")
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
output = sess.run(output_node)
tf.train.write_graph(sess.graph.as_graph_def(), summ_dir, 'model_00_g.pbtxt', as_text=True)
#self.assertNear(2.0, output, 0.00001)
saver = tf.train.Saver()
saver.save(sess, saver_path)
Run Code Online (Sandbox Code Playgroud)
它产生model_00_g.pbtxt了文本图形描述.几乎从freeze_graph_test.py复制粘贴.
这是读者:
with tf.Session() as sess:
with tf.Graph().as_default():
graph_def = tf.GraphDef()
graph_path = '/mnt/code/test_00/log/2016-02-11.22-37-46/model_00_g.pbtxt'
with open(graph_path, "rb") as f:
proto_b = f.read()
#print proto_b # -> I can see it
graph_def.ParseFromString(proto_b) # no luck..
_ = tf.import_graph_def(graph_def, name="")
print sess.graph_def
Run Code Online (Sandbox Code Playgroud)
哪个失败graph_def.ParseFromString()了DecodeError: Tag had invalid wire type.
我在码头集装箱上b.gcr.io/tensorflow/tensorflow:latest-devel,以防它有任何区别.
mrr*_*rry 16
该GraphDef.ParseFromString()方法(以及通常,ParseFromString()任何Python protobuf包装器上的方法)需要二进制协议缓冲区格式的字符串.如果传递as_text=False给tf.train.write_graph(),则文件将采用适当的格式.
否则,您可以执行以下操作来阅读基于文本的格式:
from google.protobuf import text_format
# ...
graph_def = tf.GraphDef()
text_format.Merge(proto_b, graph_def)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
10915 次 |
| 最近记录: |