gst*_*lvr 10 scala apache-spark apache-spark-ml apache-spark-mllib
上下文: 我有一个包含两列的数据框:标签和功能.
org.apache.spark.sql.DataFrame = [label: int, features: vector]
Run Code Online (Sandbox Code Playgroud)
其中features是使用VectorAssembler构建的数值类型的mllib.linalg.VectorUDT.
问题: 有没有办法为特征向量分配模式?我想跟踪每个功能的名称.
到目前为止尝试过:
val defaultAttr = NumericAttribute.defaultAttr
val attrs = Array("feat1", "feat2", "feat3").map(defaultAttr.withName)
val attrGroup = new AttributeGroup("userFeatures", attrs.asInstanceOf[Array[Attribute]])
Run Code Online (Sandbox Code Playgroud)
scala> attrGroup.toMetadata
res197: org.apache.spark.sql.types.Metadata = {"ml_attr":{"attrs":{"numeric":[{"idx":0,"name":"f1"},{"idx":1,"name":"f2"},{"idx":2,"name":"f3"}]},"num_attrs":3}}
Run Code Online (Sandbox Code Playgroud)
但不确定如何将其应用于现有数据框.
zer*_*323 15
至少有两种选择:
在现有的DataFrame你可以使用as带metadata参数的方法:
import org.apache.spark.ml.attribute._
val rdd = sc.parallelize(Seq(
(1, Vectors.dense(1.0, 2.0, 3.0))
))
val df = rdd.toDF("label", "features")
df.withColumn("features", $"features".as("_", attrGroup.toMetadata))
Run Code Online (Sandbox Code Playgroud)创建新DataFrame转换AttributeGroup toStructField并将其用作给定列的架构时:
import org.apache.spark.sql.types.{StructType, StructField, IntegerType}
val schema = StructType(Array(
StructField("label", IntegerType, false),
attrGroup.toStructField()
))
spark.createDataFrame(
rdd.map(row => Row.fromSeq(row.productIterator.toSeq)),
schema)
Run Code Online (Sandbox Code Playgroud)如果使用VectorAssembler列元数据创建了向量列,则应该已经附加了描述父列的列.
import org.apache.spark.ml.feature.VectorAssembler
val raw = sc.parallelize(Seq(
(1, 1.0, 2.0, 3.0)
)).toDF("id", "feat1", "feat2", "feat3")
val assembler = new VectorAssembler()
.setInputCols(Array("feat1", "feat2", "feat3"))
.setOutputCol("features")
val dfWithMeta = assembler.transform(raw).select($"id", $"features")
dfWithMeta.schema.fields(1).metadata
// org.apache.spark.sql.types.Metadata = {"ml_attr":{"attrs":{"numeric":[
// {"idx":0,"name":"feat1"},{"idx":1,"name":"feat2"},
// {"idx":2,"name":"feat3"}]},"num_attrs":3}
Run Code Online (Sandbox Code Playgroud)
使用点语法(如$features.feat1)不能直接访问矢量字段,但可以使用专门的工具,例如VectorSlicer:
import org.apache.spark.ml.feature.VectorSlicer
val slicer = new VectorSlicer()
.setInputCol("features")
.setOutputCol("featuresSubset")
.setNames(Array("feat1", "feat3"))
slicer.transform(dfWithMeta).show
// +---+-------------+--------------+
// | id| features|featuresSubset|
// +---+-------------+--------------+
// | 1|[1.0,2.0,3.0]| [1.0,3.0]|
// +---+-------------+--------------+
Run Code Online (Sandbox Code Playgroud)
对于PySpark,请参阅如何将列声明为DataFrame 中的分类功能,以便在ml中使用
| 归档时间: |
|
| 查看次数: |
3351 次 |
| 最近记录: |