Nir*_*ami 8 algorithm polygon simplification computational-geometry
我正在尝试实施一个siplification算法.主2种算法我发现是拉默道格拉斯-普克:https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm 和Visvalingam-Whyatt:HTTPS://bost.ocks .org/mike/simplify / 目前我在matlab上运行了一些模拟,以确定更好的需求.
该算法的主要目标是在地图中同化多边形.我的输入是一个多边形\折线和错误epsilon的阈值.
我需要将简化的多边形尽可能地接近原始多边形,并且我没有要求保留的点数的要求.
我在比较这两种算法时遇到困难,因为:RDP的epsilon是距离,而VW的epsilon是一个区域.我需要帮助了解如何比较两种算法.这可以给我少点保持在门槛之内?
我需要简化的多边形尽可能接近原始多边形,并且我不需要保留点数。
DP方法将以更少的点数为您提供更好的可感知拟合度-因为它的控制参数(即距离公差)被您的要求“尽可能接近”捕获。
话虽如此,整个多边形或点云相对于像素尺寸的比例将对较小的图像产生更大的影响。下面的练习可以使您对这两种算法的执行情况有一个“感觉”。
这是我在Visvalingam-Whyatt和Ramer-Douglas-Peucker之间进行的一些比较,最初包含在100x100位图中的一些轮廓。图像是轮廓上约10倍缩放的屏幕截图。
(您可能需要下载图像以了解性能上的差异)
Visvalingam-Whyatt方法的结果: 感谢Zach在github上的实现移植到opencv数据类型。

VSV简化-0.55(白色),0.4(红色),0.25(洋红色),0.15(青色)百分比公差
VSV点减少量t:%公差。这直接确定n = t * orig / 100。n是最终分数
orig 88: [n=47 for t=0.55], [n=34 for t=0.4], [n=20 for t=0.25], [n=12 for t=0.15]
orig 133: [n=72 for t=0.55], [n=52 for t=0.4], [n=32 for t=0.25], [n=18 for t=0.15]
orig 118: [n=63 for t=0.55], [n=46 for t=0.4], [n=28 for t=0.25], [n=16 for t=0.15]
orig 107: [n=57 for t=0.55], [n=41 for t=0.4], [n=25 for t=0.25], [n=15 for t=0.15]
orig 107: [n=57 for t=0.55], [n=41 for t=0.4], [n=25 for t=0.25], [n=15 for t=0.15]
orig 268: [n=146 for t=0.55], [n=106 for t=0.4], [n=65 for t=0.25], [n=39 for t=0.15]
orig 158: [n=85 for t=0.55], [n=62 for t=0.4], [n=38 for t=0.25], [n=22 for t=0.15]
orig 158: [n=85 for t=0.55], [n=62 for t=0.4], [n=38 for t=0.25], [n=22 for t=0.15]
orig 109: [n=58 for t=0.55], [n=42 for t=0.4], [n=26 for t=0.25], [n=15 for t=0.15]
orig 192: [n=104 for t=0.55], [n=75 for t=0.4], [n=46 for t=0.25], [n=27 for t=0.15]
orig 132: [n=71 for t=0.55], [n=51 for t=0.4], [n=31 for t=0.25], [n=18 for t=0.15]
orig 89: [n=47 for t=0.55], [n=34 for t=0.4], [n=21 for t=0.25], [n=12 for t=0.15]
orig 110: [n=59 for t=0.55], [n=42 for t=0.4], [n=26 for t=0.25], [n=15 for t=0.15]
orig 40: [n=20 for t=0.55], [n=14 for t=0.4], [n=8 for t=0.25], [n=4 for t=0.15]
Run Code Online (Sandbox Code Playgroud)
使用openCVroxPolyDP的DP方法结果
Douglas-Peucker-点缩减t:像素距离公差=>与n没有直接关系-最终的点数
orig 88: [n=33 for t=0.1], [n=29 for t=0.5], [n=8 for t=1], [n=6 for t=2]
orig 133: [n=57 for t=0.1], [n=45 for t=0.5], [n=12 for t=1], [n=7 for t=2]
orig 118: [n=50 for t=0.1], [n=40 for t=0.5], [n=15 for t=1], [n=8 for t=2]
orig 107: [n=47 for t=0.1], [n=35 for t=0.5], [n=11 for t=1], [n=6 for t=2]
orig 107: [n=30 for t=0.1], [n=24 for t=0.5], [n=8 for t=1], [n=6 for t=2]
orig 268: [n=126 for t=0.1], [n=110 for t=0.5], [n=32 for t=1], [n=23 for t=2]
orig 158: [n=80 for t=0.1], [n=62 for t=0.5], [n=17 for t=1], [n=11 for t=2]
orig 158: [n=66 for t=0.1], [n=52 for t=0.5], [n=16 for t=1], [n=9 for t=2]
orig 109: [n=50 for t=0.1], [n=38 for t=0.5], [n=12 for t=1], [n=9 for t=2]
orig 192: [n=74 for t=0.1], [n=64 for t=0.5], [n=18 for t=1], [n=15 for t=2]
orig 132: [n=58 for t=0.1], [n=45 for t=0.5], [n=14 for t=1], [n=11 for t=2]
orig 89: [n=37 for t=0.1], [n=31 for t=0.5], [n=7 for t=1], [n=6 for t=2]
orig 110: [n=42 for t=0.1], [n=36 for t=0.5], [n=9 for t=1], [n=7 for t=2]
orig 40: [n=18 for t=0.1], [n=15 for t=0.5], [n=9 for t=1], [n=3 for t=2]
Run Code Online (Sandbox Code Playgroud)
对于我的应用程序,相对于DP方法可能的效率,我更喜欢在此实现中VWV提供的控制。
但是总的来说,我觉得openCV的DP实现提供了更流畅的理解。
尽管我对VSV性能的结论仅基于Zach的实现,但我怀疑其他实现是否会提供特征上不同的多边形子集。
[UPDATE1]这是最坏情况的比较。DP在视觉上更容易接受。