Nic*_*ian 6 python nlp scikit-learn
Scikit-learn的sklearn.metrics.pairwise.cosine_similarity和sklearn.metrics.pairwise.pairwise_distances(.. metric ="cosine")有什么区别?
from sklearn.feature_extraction.text import TfidfVectorizer
documents = (
"Macbook Pro 15' Silver Gray with Nvidia GPU",
"Macbook GPU"
)
tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)
from sklearn.metrics.pairwise import cosine_similarity
print(cosine_similarity(tfidf_matrix[0:1], tfidf_matrix)[0,1])
Run Code Online (Sandbox Code Playgroud)
0.37997836
from sklearn.metrics.pairwise import pairwise_distances
print(pairwise_distances(tfidf_matrix[0:1], tfidf_matrix, metric='cosine')[0,1])
Run Code Online (Sandbox Code Playgroud)
0.62002164
为什么这些不同?
Far*_*eer 17
从源代码文档:
Cosine distance is defined as 1.0 minus the cosine similarity.
Run Code Online (Sandbox Code Playgroud)
所以你的结果很有意义.
| 归档时间: |
|
| 查看次数: |
5901 次 |
| 最近记录: |