scikit cosine_similarity vs pairwise_distances

Nic*_*ian 6 python nlp scikit-learn

Scikit-learn的sklearn.metrics.pairwise.cosine_similarity和sklearn.metrics.pairwise.pairwise_distances(.. metric ="cosine")有什么区别?

from sklearn.feature_extraction.text import TfidfVectorizer

documents = (
    "Macbook Pro 15' Silver Gray with Nvidia GPU",
    "Macbook GPU"    
)

tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix = tfidf_vectorizer.fit_transform(documents)

from sklearn.metrics.pairwise import cosine_similarity
print(cosine_similarity(tfidf_matrix[0:1], tfidf_matrix)[0,1])
Run Code Online (Sandbox Code Playgroud)

0.37997836

from sklearn.metrics.pairwise import pairwise_distances
print(pairwise_distances(tfidf_matrix[0:1], tfidf_matrix, metric='cosine')[0,1])
Run Code Online (Sandbox Code Playgroud)

0.62002164

为什么这些不同?

Far*_*eer 17

从源代码文档:

Cosine distance is defined as 1.0 minus the cosine similarity.
Run Code Online (Sandbox Code Playgroud)

所以你的结果很有意义.

  • 六年后,该视频的浏览量已超过 10,000 次,所以我想我不是唯一一个错过它的人! (2认同)