Python Pandas计算特定值的出现次数

JJS*_*ith 32 python pandas

我试图找到某个值出现在一列中的次数.

我已经制作了数据帧 data = pd.DataFrame.from_csv('data/DataSet2.csv')

现在我想找到某个列出现的次数.这是怎么做到的?

我认为这是下面的,我正在查看教育专栏并计算?发生的时间.

下面的代码显示我试图找到9th出现的次数,错误是我运行代码时得到的

missing2 = df.education.value_counts()['9th']
print(missing2)
Run Code Online (Sandbox Code Playgroud)

错误

KeyError: '9th'
Run Code Online (Sandbox Code Playgroud)

jez*_*ael 44

您可以subset根据自己的条件创建数据,然后使用shapelen:

print df
  col1 education
0    a       9th
1    b       9th
2    c       8th

print df.education == '9th'
0     True
1     True
2    False
Name: education, dtype: bool

print df[df.education == '9th']
  col1 education
0    a       9th
1    b       9th

print df[df.education == '9th'].shape[0]
2
print len(df[df['education'] == '9th'])
2
Run Code Online (Sandbox Code Playgroud)

性能很有趣,最快的解决方案是比较numpy数组和sum:

图形

代码:

import perfplot, string
np.random.seed(123)


def shape(df):
    return df[df.education == 'a'].shape[0]

def len_df(df):
    return len(df[df['education'] == 'a'])

def query_count(df):
    return df.query('education == "a"').education.count()

def sum_mask(df):
    return (df.education == 'a').sum()

def sum_mask_numpy(df):
    return (df.education.values == 'a').sum()

def make_df(n):
    L = list(string.ascii_letters)
    df = pd.DataFrame(np.random.choice(L, size=n), columns=['education'])
    return df

perfplot.show(
    setup=make_df,
    kernels=[shape, len_df, query_count, sum_mask, sum_mask_numpy],
    n_range=[2**k for k in range(2, 25)],
    logx=True,
    logy=True,
    equality_check=False, 
    xlabel='len(df)')
Run Code Online (Sandbox Code Playgroud)


小智 14

尝试这个:

(df[education]=='9th').sum()
Run Code Online (Sandbox Code Playgroud)

  • 这可以通过将代码放在代码块中(缩进 4 个空格)并解释代码正在做什么来改进。 (4认同)

Zer*_*ero 13

几种方式使用countsum

In [338]: df
Out[338]:
  col1 education
0    a       9th
1    b       9th
2    c       8th

In [335]: df.loc[df.education == '9th', 'education'].count()
Out[335]: 2

In [336]: (df.education == '9th').sum()
Out[336]: 2

In [337]: df.query('education == "9th"').education.count()
Out[337]: 2
Run Code Online (Sandbox Code Playgroud)


ker*_*mat 6

简单但效率不高:

list(df.education).count('9th')
Run Code Online (Sandbox Code Playgroud)


Car*_*ira 6

计算 Pandas 数据框中列中出现次数(唯一值)的简单示例:

import pandas as pd

# URL to .csv file 
data_url = 'https://yoursite.com/Arrests.csv'
# Reading the data 
df = pd.read_csv(data_url, index_col=0)
# pandas count distinct values in column 
df['education'].value_counts()
Run Code Online (Sandbox Code Playgroud)

输出:

Education        47516 
9th              41164 
8th              25510 
7th              25198 
6th              25047                       
...  
3rd                 2 
2nd                 2 
1st                 2 
Name: name, Length: 190, dtype: int64
Run Code Online (Sandbox Code Playgroud)


小智 5

计算'?'任何列中任何符号或任何符号的出现的一种优雅方法是使用isin数据框对象的内置函数。

假设我们已将“汽车” 数据集加载到df对象中。我们不知道哪些列包含缺失值('?'符号),所以请执行以下操作:

df.isin(['?']).sum(axis=0)
Run Code Online (Sandbox Code Playgroud)

DataFrame.isin(values) 官方文件说:

它返回布尔型DataFrame,显示该DataFrame中的每个元素是否包含在值中

注意,它isin接受一个iterable作为输入,因此我们需要将包含目标符号的列表传递给此函数。df.isin(['?'])将返回一个布尔数据框,如下所示。

    symboling   normalized-losses   make    fuel-type   aspiration-ratio ...
0   False       True                False   False       False
1   False       True                False   False       False
2   False       True                False   False       False
3   False       False               False   False       False
4   False       False               False   False       False
5   False       True                False   False       False
...
Run Code Online (Sandbox Code Playgroud)

要计算目标符号在每一列中的出现次数,我们sum通过指示来接管上述数据框的所有行axis=0。最终(截断)结果显示了我们的期望:

symboling             0
normalized-losses    41
...
bore                  4
stroke                4
compression-ratio     0
horsepower            2
peak-rpm              2
city-mpg              0
highway-mpg           0
price                 4
Run Code Online (Sandbox Code Playgroud)