Python Keras如何在将卷积层转换为lstm层后更改输入的大小

Mik*_*aev 4 python machine-learning convolution lstm keras

我在卷积层和lstm层之间的连接有问题。数据的形状为(75,5),其中每个时间步长有75个时间步长x 5个数据点。我想做的是在(75x5)上进行卷积,获取新的卷积(75x5)数据并将该数据馈送到lstm层。但是,由于卷积层的输出形状具有不需要的滤波器数量,因此不起作用。因此,卷积层输出的形状为(1,75,5),而lstm层所需的输入为(75,5)。我如何只使用第一个过滤器。

model = Sequential() 
model.add(Convolution2D(1, 5,5,border_mode='same',input_shape=(1,75, 5)))
model.add(Activation('relu'))
model.add(LSTM(75, return_sequences=False, input_shape=(75, 5)))
model.add(Dropout(0.5))
model.add(Dense(1))
model.compile(loss='mse', optimizer='rmsprop')
Run Code Online (Sandbox Code Playgroud)

这是出现的错误:

File "/usr/local/lib/python3.4/dist-packages/keras/layers/recurrent.py", line 378, in __init__
super(LSTM, self).__init__(**kwargs)
File "/usr/local/lib/python3.4/dist-packages/keras/layers/recurrent.py", line 97, in __init__
super(Recurrent, self).__init__(**kwargs)
File "/usr/local/lib/python3.4/dist-packages/keras/layers/core.py", line 43, in __init__
self.set_input_shape((None,) + tuple(kwargs['input_shape']))
File "/usr/local/lib/python3.4/dist-packages/keras/layers/core.py", line 138, in set_input_shape
', was provided with input shape ' + str(input_shape))
Exception: Invalid input shape - Layer expects input ndim=3, was provided with input shape (None, 1, 75, 5)
Run Code Online (Sandbox Code Playgroud)

lej*_*lot 5

您可以在两者之间添加Reshape()层以使尺寸兼容。

http://keras.io/layers/core/#reshape

keras.layers.core.Reshape(dims)

将输出重塑为特定形状。

输入形状

任意,尽管必须固定输入形状中的所有尺寸。当将此层用作模型的第一层时,请使用关键字参数input_shape(整数元组,不包括样本轴)。

输出形状

(batch_size,) + dims

争论

dims:目标形状。整数元组,不包括样本维度(批量大小)。