Mic*_*cka 10 opencv image-processing contour computer-vision convexity-defects
我正试图从轮廓中检测并精确定位图像中的一些物体.我得到的轮廓通常包括一些噪音(可能形成背景,我不知道).对象看起来应该类似于矩形或正方形,如:
我通过形状匹配(cv::matchShapes)来获得非常好的结果,以检测其中包含这些对象的轮廓,有无噪音,但是在出现噪音的情况下我会遇到精确定位的问题.
噪音看起来像:
我的想法是找到凸起缺陷,如果它们变得太强,就会以某种方式去除导致凹陷的部分.检测缺陷是可以的,通常我会在每个"不需要的结构"中得到两个缺陷,但我仍然坚持如何决定从轮廓中删除点的位置和位置.
这里有一些轮廓,它们的面具(因此你可以很容易地提取轮廓)和包括阈值凸面缺陷的凸包:
我是否可以在轮廓中走动并在局部判断轮廓是否执行"左转"(如果顺时针方向行走),如果是,则移除轮廓点直到下一个左转弯?也许从凸性缺陷开始?
我在寻找算法或代码,编程语言应该不重要,算法更重要.
Mik*_*iki 12
这种方法仅适用于点.您无需为此创建蒙版.
主要想法是:
我得到以下结果.正如您所看到的,它对于平滑缺陷(例如第7张图像)有一些缺点,但对于清晰可见的缺陷非常有用.我不知道这是否能解决你的问题,但可以作为一个起点.在实践中应该非常快(你可以肯定优化下面的代码,特别是removeFromContour功能).此外,这种方法的唯一参数是凸度缺陷的数量,因此它适用于小的和大的缺陷斑点.
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int ed2(const Point& lhs, const Point& rhs)
{
return (lhs.x - rhs.x)*(lhs.x - rhs.x) + (lhs.y - rhs.y)*(lhs.y - rhs.y);
}
vector<Point> removeFromContour(const vector<Point>& contour, const vector<int>& defectsIdx)
{
int minDist = INT_MAX;
int startIdx;
int endIdx;
// Find nearest defects
for (int i = 0; i < defectsIdx.size(); ++i)
{
for (int j = i + 1; j < defectsIdx.size(); ++j)
{
float dist = ed2(contour[defectsIdx[i]], contour[defectsIdx[j]]);
if (minDist > dist)
{
minDist = dist;
startIdx = defectsIdx[i];
endIdx = defectsIdx[j];
}
}
}
// Check if intervals are swapped
if (startIdx <= endIdx)
{
int len1 = endIdx - startIdx;
int len2 = contour.size() - endIdx + startIdx;
if (len2 < len1)
{
swap(startIdx, endIdx);
}
}
else
{
int len1 = startIdx - endIdx;
int len2 = contour.size() - startIdx + endIdx;
if (len1 < len2)
{
swap(startIdx, endIdx);
}
}
// Remove unwanted points
vector<Point> out;
if (startIdx <= endIdx)
{
out.insert(out.end(), contour.begin(), contour.begin() + startIdx);
out.insert(out.end(), contour.begin() + endIdx, contour.end());
}
else
{
out.insert(out.end(), contour.begin() + endIdx, contour.begin() + startIdx);
}
return out;
}
int main()
{
Mat1b img = imread("path_to_mask", IMREAD_GRAYSCALE);
Mat3b out;
cvtColor(img, out, COLOR_GRAY2BGR);
vector<vector<Point>> contours;
findContours(img.clone(), contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);
vector<Point> pts = contours[0];
vector<int> hullIdx;
convexHull(pts, hullIdx, false);
vector<Vec4i> defects;
convexityDefects(pts, hullIdx, defects);
while (true)
{
// For debug
Mat3b dbg;
cvtColor(img, dbg, COLOR_GRAY2BGR);
vector<vector<Point>> tmp = {pts};
drawContours(dbg, tmp, 0, Scalar(255, 127, 0));
vector<int> defectsIdx;
for (const Vec4i& v : defects)
{
float depth = float(v[3]) / 256.f;
if (depth > 2) // filter defects by depth
{
// Defect found
defectsIdx.push_back(v[2]);
int startidx = v[0]; Point ptStart(pts[startidx]);
int endidx = v[1]; Point ptEnd(pts[endidx]);
int faridx = v[2]; Point ptFar(pts[faridx]);
line(dbg, ptStart, ptEnd, Scalar(255, 0, 0), 1);
line(dbg, ptStart, ptFar, Scalar(0, 255, 0), 1);
line(dbg, ptEnd, ptFar, Scalar(0, 0, 255), 1);
circle(dbg, ptFar, 4, Scalar(127, 127, 255), 2);
}
}
if (defectsIdx.size() < 2)
{
break;
}
// If I have more than two defects, remove the points between the two nearest defects
pts = removeFromContour(pts, defectsIdx);
convexHull(pts, hullIdx, false);
convexityDefects(pts, hullIdx, defects);
}
// Draw result contour
vector<vector<Point>> tmp = { pts };
drawContours(out, tmp, 0, Scalar(0, 0, 255), 1);
imshow("Result", out);
waitKey();
return 0;
}
Run Code Online (Sandbox Code Playgroud)
UPDATE
在近似轮廓上工作(例如,使用CHAIN_APPROX_SIMPLEin findContours)可能更快,但必须使用计算轮廓的长度arcLength().
这是在交换部分中替换的片段removeFromContour:
// Check if intervals are swapped
if (startIdx <= endIdx)
{
//int len11 = endIdx - startIdx;
vector<Point> inside(contour.begin() + startIdx, contour.begin() + endIdx);
int len1 = (inside.empty()) ? 0 : arcLength(inside, false);
//int len22 = contour.size() - endIdx + startIdx;
vector<Point> outside1(contour.begin(), contour.begin() + startIdx);
vector<Point> outside2(contour.begin() + endIdx, contour.end());
int len2 = (outside1.empty() ? 0 : arcLength(outside1, false)) + (outside2.empty() ? 0 : arcLength(outside2, false));
if (len2 < len1)
{
swap(startIdx, endIdx);
}
}
else
{
//int len1 = startIdx - endIdx;
vector<Point> inside(contour.begin() + endIdx, contour.begin() + startIdx);
int len1 = (inside.empty()) ? 0 : arcLength(inside, false);
//int len2 = contour.size() - startIdx + endIdx;
vector<Point> outside1(contour.begin(), contour.begin() + endIdx);
vector<Point> outside2(contour.begin() + startIdx, contour.end());
int len2 = (outside1.empty() ? 0 : arcLength(outside1, false)) + (outside2.empty() ? 0 : arcLength(outside2, false));
if (len1 < len2)
{
swap(startIdx, endIdx);
}
}
Run Code Online (Sandbox Code Playgroud)
这是遵循 Miki 代码的 Python 实现。
import numpy as np
import cv2
def ed2(lhs, rhs):
return(lhs[0] - rhs[0])*(lhs[0] - rhs[0]) + (lhs[1] - rhs[1])*(lhs[1] - rhs[1])
def remove_from_contour(contour, defectsIdx, tmp):
minDist = sys.maxsize
startIdx, endIdx = 0, 0
for i in range(0,len(defectsIdx)):
for j in range(i+1, len(defectsIdx)):
dist = ed2(contour[defectsIdx[i]][0], contour[defectsIdx[j]][0])
if minDist > dist:
minDist = dist
startIdx = defectsIdx[i]
endIdx = defectsIdx[j]
if startIdx <= endIdx:
inside = contour[startIdx:endIdx]
len1 = 0 if inside.size == 0 else cv2.arcLength(inside, False)
outside1 = contour[0:startIdx]
outside2 = contour[endIdx:len(contour)]
len2 = (0 if outside1.size == 0 else cv2.arcLength(outside1, False)) + (0 if outside2.size == 0 else cv2.arcLength(outside2, False))
if len2 < len1:
startIdx,endIdx = endIdx,startIdx
else:
inside = contour[endIdx:startIdx]
len1 = 0 if inside.size == 0 else cv2.arcLength(inside, False)
outside1 = contour[0:endIdx]
outside2 = contour[startIdx:len(contour)]
len2 = (0 if outside1.size == 0 else cv2.arcLength(outside1, False)) + (0 if outside2.size == 0 else cv2.arcLength(outside2, False))
if len1 < len2:
startIdx,endIdx = endIdx,startIdx
if startIdx <= endIdx:
out = np.concatenate((contour[0:startIdx], contour[endIdx:len(contour)]), axis=0)
else:
out = contour[endIdx:startIdx]
return out
def remove_defects(mask, debug=False):
tmp = mask.copy()
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# get contour
contours, _ = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
assert len(contours) > 0, "No contours found"
contour = sorted(contours, key=cv2.contourArea)[-1] #largest contour
if debug:
init = cv2.drawContours(tmp.copy(), [contour], 0, (255, 0, 255), 1, cv2.LINE_AA)
figure, ax = plt.subplots(1)
ax.imshow(init)
ax.set_title("Initital Contour")
hull = cv2.convexHull(contour, returnPoints=False)
defects = cv2.convexityDefects(contour, hull)
while True:
defectsIdx = []
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(contour[s][0])
end = tuple(contour[e][0])
far = tuple(contour[f][0])
depth = d / 256
if depth > 2:
defectsIdx.append(f)
if len(defectsIdx) < 2:
break
contour = remove_from_contour(contour, defectsIdx, tmp)
hull = cv2.convexHull(contour, returnPoints=False)
defects = cv2.convexityDefects(contour, hull)
if debug:
rslt = cv2.drawContours(tmp.copy(), [contour], 0, (0, 255, 255), 1)
figure, ax = plt.subplots(1)
ax.imshow(rslt)
ax.set_title("Corrected Contour")
mask = cv2.imread("a.png")
remove_defects(mask, True)
Run Code Online (Sandbox Code Playgroud)