uda*_*ani 12 deep-learning lstm keras
我正在尝试实现基于LSTM的语音识别器.到目前为止,我可以通过遵循Merge层中的示例来设置双向LSTM(我认为它可以作为双向LSTM).现在我想用另一个双向LSTM层来尝试它,这使它成为一个深度双向LSTM.但我无法弄清楚如何将先前合并的两层的输出连接到第二组LSTM层.我不知道Keras是否有可能.希望有人可以帮助我.
我的单层双向LSTM的代码如下
left = Sequential()
left.add(LSTM(output_dim=hidden_units, init='uniform', inner_init='uniform',
forget_bias_init='one', return_sequences=True, activation='tanh',
inner_activation='sigmoid', input_shape=(99, 13)))
right = Sequential()
right.add(LSTM(output_dim=hidden_units, init='uniform', inner_init='uniform',
forget_bias_init='one', return_sequences=True, activation='tanh',
inner_activation='sigmoid', input_shape=(99, 13), go_backwards=True))
model = Sequential()
model.add(Merge([left, right], mode='sum'))
model.add(TimeDistributedDense(nb_classes))
model.add(Activation('softmax'))
sgd = SGD(lr=0.1, decay=1e-5, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
print("Train...")
model.fit([X_train, X_train], Y_train, batch_size=1, nb_epoch=nb_epoches, validation_data=([X_test, X_test], Y_test), verbose=1, show_accuracy=True)
Run Code Online (Sandbox Code Playgroud)
我的x和y值的尺寸如下.
(100, 'train sequences')
(20, 'test sequences')
('X_train shape:', (100, 99, 13))
('X_test shape:', (20, 99, 13))
('y_train shape:', (100, 99, 11))
('y_test shape:', (20, 99, 11))
Run Code Online (Sandbox Code Playgroud)
您可以使用keras.layers.wrappers.Bidirectional. 官方手册可以参考这里,https://keras.io/layers/wrappers/#bidirectional
| 归档时间: |
|
| 查看次数: |
24914 次 |
| 最近记录: |