los*_*ace 14 python apache-kafka apache-spark spark-streaming pyspark
我有一个火花流工作,每5秒从Kafka读取一次,对传入的数据进行一些转换,然后写入文件系统.
这实际上并不需要是一个流媒体工作,实际上,我只想每天运行一次以将消息排放到文件系统上.我不知道如何阻止这份工作.
如果我将超时传递给streamingContext.awaitTermination,它不会停止进程,它只会导致进程在流上进行迭代时产生错误(请参阅下面的错误)
完成我想要做的事情的最佳方法是什么
这适用于Python上的Spark 1.6
编辑:
感谢@marios解决方案是这样的:
ssc.start()
ssc.awaitTermination(10)
ssc.stop()
Run Code Online (Sandbox Code Playgroud)
在停止之前运行脚本十秒钟.
简化代码:
conf = SparkConf().setAppName("Vehicle Data Consolidator").set('spark.files.overwrite','true')
sc = SparkContext(conf=conf)
ssc = StreamingContext(sc, 5)
stream = KafkaUtils.createStream(
ssc,
kafkaParams["zookeeper.connect"],
"vehicle-data-importer",
topicPartitions,
kafkaParams)
stream.saveAsTextFiles('stream-output/kafka-vehicle-data')
ssc.start()
ssc.awaitTermination(10)
Run Code Online (Sandbox Code Playgroud)
错误:
16/01/29 15:05:44 INFO BlockManagerInfo: Added input-0-1454097944200 in memory on localhost:58960 (size: 3.0 MB, free: 48.1 MB)
16/01/29 15:05:44 WARN BlockManager: Block input-0-1454097944200 replicated to only 0 peer(s) instead of 1 peers
16/01/29 15:05:44 INFO BlockGenerator: Pushed block input-0-1454097944200
16/01/29 15:05:45 ERROR JobScheduler: Error generating jobs for time 1454097945000 ms
py4j.Py4JException: Cannot obtain a new communication channel
at py4j.CallbackClient.sendCommand(CallbackClient.java:232)
at py4j.reflection.PythonProxyHandler.invoke(PythonProxyHandler.java:111)
at com.sun.proxy.$Proxy14.call(Unknown Source)
at org.apache.spark.streaming.api.python.TransformFunction.callPythonTransformFunction(PythonDStream.scala:92)
at org.apache.spark.streaming.api.python.TransformFunction.apply(PythonDStream.scala:78)
at org.apache.spark.streaming.api.python.PythonTransformedDStream.compute(PythonDStream.scala:230)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:352)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:352)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:351)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:351)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:346)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:344)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:341)
at org.apache.spark.streaming.dstream.ForEachDStream.generateJob(ForEachDStream.scala:47)
at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:115)
at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:114)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
at org.apache.spark.streaming.DStreamGraph.generateJobs(DStreamGraph.scala:114)
at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:248)
at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:246)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.scheduler.JobGenerator.generateJobs(JobGenerator.scala:246)
at org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:181)
at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:87)
at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:86)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
16/01/29 15:05:45 INFO MemoryStore: Block input-0-1454097944800 stored as bytes in memory (estimated size 3.0 MB, free 466.1 MB)
16/01/29 15:05:45 INFO BlockManagerInfo: Added input-0-1454097944800 in memory on localhost:58960 (size: 3.0 MB, free: 45.1 MB)
Run Code Online (Sandbox Code Playgroud)
似乎正确的调用方法是awaitTerminationOrTimeout(self,timeout).
我不确定它是否也会停止流式上下文.所以也许你可以在超时结束后立即调用ssc.stop().
ssc.start()
ssc.awaitTerminationOrTimeout(10)
ssc.stop()
Run Code Online (Sandbox Code Playgroud)
注意:看看这里是否有类似的问题.
| 归档时间: |
|
| 查看次数: |
7894 次 |
| 最近记录: |