我有两个要合并的数据表。一个是关于时间的公司市场价值数据,另一个是关于时间的公司股息历史记录。我试图找出每个公司每个季度支付了多少钱,并将该价值随时间推移到市场价值数据旁边。
library(magrittr)
library(data.table)
library(zoo)
library(lubridate)
set.seed(1337)
# data table of company market values
companies <-
data.table(companyID = 1:10,
Sedol = rep(c("91772E", "7A662B"), each = 5),
Date = (as.Date("2005-04-01") + months(seq(0, 12, 3))) - days(1),
MktCap = c(100 + cumsum(rnorm(5,5)),
50 + cumsum(rnorm(5,1,5)))) %>%
setkey(Sedol, Date)
# data table of dividends
dividends <-
data.table(DivID = 1:7,
Sedol = c(rep('91772E', each = 4), rep('7A662B', each = 3)),
Date = as.Date(c('2004-11-19', '2005-01-13', '2005-01-29',
'2005-10-01', '2005-06-29', '2005-06-30',
'2006-04-17')),
DivAmnt = rnorm(7, .8, .3)) %>%
setkey(Sedol, Date)
Run Code Online (Sandbox Code Playgroud)
我相信在这种情况下,您可以使用data.table滚动连接,例如:
dividends[companies, roll = "nearest"]
Run Code Online (Sandbox Code Playgroud)
尝试获取看起来像的数据集
DivID Sedol Date DivAmnt companyID MktCap
1: NA 7A662B <NA> NA 6 61.21061
2: 5 7A662B 2005-06-29 0.7772631 7 66.92951
3: 6 7A662B 2005-06-30 1.1815343 7 66.92951
4: NA 7A662B <NA> NA 8 78.33914
5: NA 7A662B <NA> NA 9 88.92473
6: NA 7A662B <NA> NA 10 87.85067
7: 2 91772E 2005-01-13 0.2964291 1 105.19249
8: 3 91772E 2005-01-29 0.8472649 1 105.19249
9: NA 91772E <NA> NA 2 108.74579
10: 4 91772E 2005-10-01 1.2467408 3 113.42261
11: NA 91772E <NA> NA 4 120.04491
12: NA 91772E <NA> NA 5 124.35588
Run Code Online (Sandbox Code Playgroud)
(请注意,我已将股息与确切的季度的公司市值进行了匹配)
但是我不确定如何执行它。该CRAN PDF格式相当含糊什么数,或者应该有,如果roll
是一个值(你可以通过日期?有没有一个量化数天前进行?obersvations多少?)和改变rollends
周围似乎并没有让我我想要的是。
最后,我最终将股息日期映射到其季度末,然后加入。一个很好的解决方案,但是如果我最终需要了解如何执行滚动联接,就没有用。在您的回答中,您能否描述滚动连接是唯一解决方案的情况,并帮助我理解如何执行它们?
代替滚动连接,您可能希望将重叠连接与data.tablefoverlaps
函数一起使用:
# create an interval in the 'companies' datatable
companies[, `:=` (start = compDate - days(90), end = compDate + days(15))]
# create a second date in the 'dividends' datatable
dividends[, Date2 := divDate]
# set the keys for the two datatable
setkey(companies, Sedol, start, end)
setkey(dividends, Sedol, divDate, Date2)
# create a vector of columnnames which can be removed afterwards
deletecols <- c("Date2","start","end")
# perform the overlap join and remove the helper columns
res <- foverlaps(companies, dividends)[, (deletecols) := NULL]
Run Code Online (Sandbox Code Playgroud)
结果:
Run Code Online (Sandbox Code Playgroud)> res Sedol DivID divDate DivAmnt companyID compDate MktCap 1: 7A662B NA <NA> NA 6 2005-03-31 61.21061 2: 7A662B 5 2005-06-29 0.7772631 7 2005-06-30 66.92951 3: 7A662B 6 2005-06-30 1.1815343 7 2005-06-30 66.92951 4: 7A662B NA <NA> NA 8 2005-09-30 78.33914 5: 7A662B NA <NA> NA 9 2005-12-31 88.92473 6: 7A662B NA <NA> NA 10 2006-03-31 87.85067 7: 91772E 2 2005-01-13 0.2964291 1 2005-03-31 105.19249 8: 91772E 3 2005-01-29 0.8472649 1 2005-03-31 105.19249 9: 91772E NA <NA> NA 2 2005-06-30 108.74579 10: 91772E 4 2005-10-01 1.2467408 3 2005-09-30 113.42261 11: 91772E NA <NA> NA 4 2005-12-31 120.04491 12: 91772E NA <NA> NA 5 2006-03-31 124.35588
同时,data.table作者引入了非等价联接(v1.9.8)。您也可以使用它来解决此问题。使用非等额联接,您只需要:
companies[, `:=` (start = compDate - days(90), end = compDate + days(15))]
dividends[companies, on = .(Sedol, divDate >= start, divDate <= end)]
Run Code Online (Sandbox Code Playgroud)
获得预期的结果。
使用的数据(与问题中相同,但未创建密钥):
set.seed(1337)
companies <- data.table(companyID = 1:10, Sedol = rep(c("91772E", "7A662B"), each = 5),
compDate = (as.Date("2005-04-01") + months(seq(0, 12, 3))) - days(1),
MktCap = c(100 + cumsum(rnorm(5,5)), 50 + cumsum(rnorm(5,1,5))))
dividends <- data.table(DivID = 1:7, Sedol = c(rep('91772E', each = 4), rep('7A662B', each = 3)),
divDate = as.Date(c('2004-11-19','2005-01-13','2005-01-29','2005-10-01','2005-06-29','2005-06-30','2006-04-17')),
DivAmnt = rnorm(7, .8, .3))
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1856 次 |
最近记录: |