使用Spark中的mapPartitions或分区器按密钥进行高效分组

jos*_*ihn 5 grouping partition apache-spark

所以,我有一个如下数据,

[ (1, data1), (1, data2), (2, data3), (1, data4), (2, data5) ]
Run Code Online (Sandbox Code Playgroud)

我想将其转换为以下内容,以便进一步处理.

[ (1, [data1, data2, data4]), (2, [data3, data5]) ]
Run Code Online (Sandbox Code Playgroud)

我使用了groupByKey和reduceByKey,但由于数据量非常大而失败.数据不高但宽.换句话说,键从1到10000,但是,值列表的范围从100k到900k.

我正在努力解决这个问题并计划申请mapPartitions(Hash)partitioner.

所以,如果其中一个可行,我想知道

  1. 使用mapPartions,你能不能给一些代码片段?
  2. 使用(Hash)partitioner,你能举一些例子来说明如何通过键之类的元素来控制分区.例如,有没有办法根据键创建每个分区(即1,2,...以上)而不需要随机播放.

Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: ShuffleMapStage 9 (flatMap at TSUMLR.scala:209) has failed the maximum allowable number of times: 4. Most recent failure reason: org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle 1
        at org.apache.spark.MapOutputTracker$$anonfun$org$apache$spark$MapOutputTracker$$convertMapStatuses$2.apply(MapOutputTracker.scala:542)
        at org.apache.spark.MapOutputTracker$$anonfun$org$apache$spark$MapOutputTracker$$convertMapStatuses$2.apply(MapOutputTracker.scala:538)
        at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772)
        at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
        at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771)
        at org.apache.spark.MapOutputTracker$.org$apache$spark$MapOutputTracker$$convertMapStatuses(MapOutputTracker.scala:538)
        at org.apache.spark.MapOutputTracker.getMapSizesByExecutorId(MapOutputTracker.scala:155)
        at org.apache.spark.shuffle.BlockStoreShuffleReader.read(BlockStoreShuffleReader.scala:47)
        at org.apache.spark.rdd.ShuffledRDD.compute(ShuffledRDD.scala:98)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
        at org.apache.spark.scheduler.Task.run(Task.scala:89)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)
Run Code Online (Sandbox Code Playgroud)

zer*_*323 6

所提出的方法都不起作用.根据定义,分区程序必须对数据进行混洗,并且会受到与之相同的限制groupByKey.mapPartitions无法将数据移动到另一个分区,因此它完全没用.由于您对问题的描述相当模糊,因此很难给出具体建议,但一般情况下我会尝试以下步骤:

  • 试着重新思考这个问题.你真的需要所有的价值吗?你打算如何利用这些?您是否可以在不收集到单个分区的情况下获得相同的结果?
  • 是否有可能减少流量?您期望有多少独特的价值?是否可以在shuffle之前压缩数据(例如计数值或使用RLE)?
  • 考虑使用更大的执行者.Spark必须仅在内存中保留单个键的值,并且可以将已处理的密钥溢出到磁盘.
  • 按键拆分数据:

    val keys =  rdd.keys.distinct.collect
    val rdds = keys.map(k => rdd.filter(_._1 == k))
    
    Run Code Online (Sandbox Code Playgroud)

    并单独处理每个RDD.