如何在MultiThread场景中对仅应执行一次的代码进行单元测试?

Cyr*_*don 9 .net c# parallel-processing multithreading unit-testing

类包含应该只创建一次的属性.创建过程是通过Func<T>参数传递的.这是缓存方案的一部分.

测试时要注意,无论有多少线程尝试访问该元素,创建只会发生一次.

单元测试的机制是在访问器周围启动大量线程,并计算调用创建函数的次数.

这根本不是确定性的,没有任何保证可以有效地测试多线程访问.也许一次只有一个线程可以锁定.(实际上,getFunctionExecuteCount如果lock不存在,则在7到9之间......在我的机器上,没有任何保证在CI服务器上它将是相同的)

如何以确定的方式重写单元测试?如何确保lock多个线程多次触发?

using Microsoft.VisualStudio.TestTools.UnitTesting;
using System;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;

namespace Example.Test
{
    public class MyObject<T> where T : class
    {
        private readonly object _lock = new object();
        private T _value = null;
        public T Get(Func<T> creator)
        {
            if (_value == null)
            {
                lock (_lock)
                {
                    if (_value == null)
                    {
                        _value = creator();
                    }
                }
            }
            return _value;
        }
    }

    [TestClass]
    public class UnitTest1
    {
        [TestMethod]
        public void MultipleParallelGetShouldLaunchGetFunctionOnlyOnce()
        {
            int getFunctionExecuteCount = 0;
            var cache = new MyObject<string>();

            Func<string> creator = () =>
            {
                Interlocked.Increment(ref getFunctionExecuteCount);
                return "Hello World!";
            };
            // Launch a very big number of thread to be sure
            Parallel.ForEach(Enumerable.Range(0, 100), _ =>
            {
                cache.Get(creator);
            });

            Assert.AreEqual(1, getFunctionExecuteCount);
        }
    }
}
Run Code Online (Sandbox Code Playgroud)

最糟糕的情况是如果有人破坏了lock代码,测试服务器有一些滞后.此测试不应通过:

using NUnit.Framework;
using System;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;

namespace Example.Test
{
    public class MyObject<T> where T : class
    {
        private readonly object _lock = new object();
        private T _value = null;
        public T Get(Func<T> creator)
        {
            if (_value == null)
            {
                // oups, some intern broke the code
                //lock (_lock)
                {
                    if (_value == null)
                    {
                        _value = creator();
                    }
                }
            }
            return _value;
        }
    }

    [TestFixture]
    public class UnitTest1
    {
        [Test]
        public void MultipleParallelGetShouldLaunchGetFunctionOnlyOnce()
        {
            int getFunctionExecuteCount = 0;
            var cache = new MyObject<string>();

            Func<string> creator = () =>
            {
                Interlocked.Increment(ref getFunctionExecuteCount);
                return "Hello World!";
            };
            Parallel.ForEach(Enumerable.Range(0, 2), threadIndex =>
            {
                // testing server has lag
                Thread.Sleep(threadIndex * 1000);
                cache.Get(creator);
            });

             // 1 test passed :'(
            Assert.AreEqual(1, getFunctionExecuteCount);
        }
    }
}
Run Code Online (Sandbox Code Playgroud)

Luc*_*ski 5

为了使它具有确定性,你只需要两个线程并确保其中一个在函数内部阻塞,而另一个也试图进入内部.

[TestMethod]
public void MultipleParallelGetShouldLaunchGetFunctionOnlyOnce()
{
    var evt = new ManualResetEvent(false);

    int functionExecuteCount = 0;
    var cache = new MyObject<object>();

    Func<object> creator = () =>
    {
        Interlocked.Increment(ref functionExecuteCount);
        evt.WaitOne();
        return new object();
    };

    var t1 = Task.Run(() => cache.Get(creator));
    var t2 = Task.Run(() => cache.Get(creator));

    // Wait for one task to get inside the function
    while (functionExecuteCount == 0)
        Thread.Yield();

    // Allow the function to finish executing
    evt.Set();

    // Wait for completion
    Task.WaitAll(t1, t2);

    Assert.AreEqual(1, functionExecuteCount);
    Assert.AreEqual(t1.Result, t2.Result);
}
Run Code Online (Sandbox Code Playgroud)

你可能想在这个测试中设置超时:)


这是一个允许测试更多案例的变体:

public void MultipleParallelGetShouldLaunchGetFunctionOnlyOnce()
{
    var evt = new ManualResetEvent(false);

    int functionExecuteCount = 0;
    var cache = new MyObject<object>();

    Func<object> creator = () =>
    {
        Interlocked.Increment(ref functionExecuteCount);
        evt.WaitOne();
        return new object();
    };

    object r1 = null, r2 = null;

    var t1 = new Thread(() => { r1 = cache.Get(creator); });
    t1.Start();

    var t2 = new Thread(() => { r2 = cache.Get(creator); });
    t2.Start();

    // Make sure both threads are blocked
    while (t1.ThreadState != ThreadState.WaitSleepJoin)
        Thread.Yield();

    while (t2.ThreadState != ThreadState.WaitSleepJoin)
        Thread.Yield();

    // Let them continue
    evt.Set();

    // Wait for completion
    t1.Join();
    t2.Join();

    Assert.AreEqual(1, functionExecuteCount);
    Assert.IsNotNull(r1);
    Assert.AreEqual(r1, r2);
}
Run Code Online (Sandbox Code Playgroud)

如果你想延迟第二次调用,你将无法使用Thread.Sleep,因为它会导致线程进入WaitSleepJoin状态:

线程被阻止.这可能是调用Thread.SleepThread.Join请求锁定的结果 - 例如,通过调用Monitor.EnterMonitor.Wait- 或等待线程同步对象,例如ManualResetEvent.

而且我们无法分辨线程是否正在睡觉或等待你ManualResetEvent...

但是你可以在忙碌的等待中轻松替换睡眠.注释掉lock,并t2改为:

var t2 = new Thread(() =>
{
    var sw = Stopwatch.StartNew();
    while (sw.ElapsedMilliseconds < 1000)
        Thread.Yield();

    r2 = cache.Get(creator);
});
Run Code Online (Sandbox Code Playgroud)

现在测试将失败.