拆分扫描文档中的文本行

Ale*_*lex 28 python ocr opencv scikit-image

我试图找到一种方法来打破已经自适应阈值化的扫描文档中的文本行.现在,我存储文档为无符号的整数0到255的像素值,并且这是我在像素的平均值中的每一行,以及我基于像素值的平均值是否是线分割成的范围大于250,然后我取每个范围的线的中位数.但是,这种方法有时会失败,因为图像上可能会出现黑色斑点.

是否有更加抗噪的方式来完成这项任务?

编辑:这是一些代码."扭曲"是原始图像的名称,"剪切"是我想要分割图像的地方.

warped = threshold_adaptive(warped, 250, offset = 10)
warped = warped.astype("uint8") * 255

# get areas where we can split image on whitespace to make OCR more accurate
color_level = np.array([np.sum(line) / len(line) for line in warped])
cuts = []
i = 0
while(i < len(color_level)):
    if color_level[i] > 250:
        begin = i
        while(color_level[i] > 250):
            i += 1
        cuts.append((i + begin)/2) # middle of the whitespace region
    else:
        i += 1
Run Code Online (Sandbox Code Playgroud)

编辑2:添加了示例图像 在此输入图像描述

Mik*_*iki 42

从输入图像中,您需要将文本设置为白色,将背景设置为黑色

在此输入图像描述

然后,您需要计算账单的旋转角度.一个简单的方法是找到minAreaRect所有白点(findNonZero),你得到:

在此输入图像描述

然后您可以旋转帐单,以便文本是水平的:

在此输入图像描述

现在你可以计算水平投影(reduce).您可以获取每行的平均值.th在直方图上应用阈值以考虑图像中的一些噪声(这里我使用了0,即没有噪声).仅具有背景的>0线条将具有值,文本线条将0在直方图中具有值.然后在直方图中获取每个连续白色区间序列的平均bin坐标.这将是y你的线的坐标:

在此输入图像描述

这里的代码.它是用C++编写的,但由于大部分工作都是使用OpenCV函数,因此它应该很容易转换为Python.至少,你可以使用它作为参考:

#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;

int main()
{
    // Read image
    Mat3b img = imread("path_to_image");

    // Binarize image. Text is white, background is black
    Mat1b bin;
    cvtColor(img, bin, COLOR_BGR2GRAY);
    bin = bin < 200;

    // Find all white pixels
    vector<Point> pts;
    findNonZero(bin, pts);

    // Get rotated rect of white pixels
    RotatedRect box = minAreaRect(pts);
    if (box.size.width > box.size.height)
    {
        swap(box.size.width, box.size.height);
        box.angle += 90.f;
    }

    Point2f vertices[4];
    box.points(vertices);

    for (int i = 0; i < 4; ++i)
    {
        line(img, vertices[i], vertices[(i + 1) % 4], Scalar(0, 255, 0));
    }

    // Rotate the image according to the found angle
    Mat1b rotated;
    Mat M = getRotationMatrix2D(box.center, box.angle, 1.0);
    warpAffine(bin, rotated, M, bin.size());

    // Compute horizontal projections
    Mat1f horProj;
    reduce(rotated, horProj, 1, CV_REDUCE_AVG);

    // Remove noise in histogram. White bins identify space lines, black bins identify text lines
    float th = 0;
    Mat1b hist = horProj <= th;

    // Get mean coordinate of white white pixels groups
    vector<int> ycoords;
    int y = 0;
    int count = 0;
    bool isSpace = false;
    for (int i = 0; i < rotated.rows; ++i)
    {
        if (!isSpace)
        {
            if (hist(i))
            {
                isSpace = true;
                count = 1;
                y = i;
            }
        }
        else
        {
            if (!hist(i))
            {
                isSpace = false;
                ycoords.push_back(y / count);
            }
            else
            {
                y += i;
                count++;
            }
        }
    }

    // Draw line as final result
    Mat3b result;
    cvtColor(rotated, result, COLOR_GRAY2BGR);
    for (int i = 0; i < ycoords.size(); ++i)
    {
        line(result, Point(0, ycoords[i]), Point(result.cols, ycoords[i]), Scalar(0, 255, 0));
    }

    return 0;
}
Run Code Online (Sandbox Code Playgroud)


Kin*_*t 金 26

基本步骤为@Miki,

  1. 阅读来源
  2. 脱粒
  3. 找到minAreaRect
  4. 由旋转矩阵扭曲
  5. 找到并绘制上下界

在此输入图像描述


Python中的代码:

#!/usr/bin/python3
# 2018.01.16 01:11:49 CST
# 2018.01.16 01:55:01 CST
import cv2
import numpy as np

## (1) read
img = cv2.imread("img02.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

## (2) threshold
th, threshed = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV|cv2.THRESH_OTSU)

## (3) minAreaRect on the nozeros
pts = cv2.findNonZero(threshed)
ret = cv2.minAreaRect(pts)

(cx,cy), (w,h), ang = ret
if w>h:
    w,h = h,w
    ang += 90

## (4) Find rotated matrix, do rotation
M = cv2.getRotationMatrix2D((cx,cy), ang, 1.0)
rotated = cv2.warpAffine(threshed, M, (img.shape[1], img.shape[0]))

## (5) find and draw the upper and lower boundary of each lines
hist = cv2.reduce(rotated,1, cv2.REDUCE_AVG).reshape(-1)

th = 2
H,W = img.shape[:2]
uppers = [y for y in range(H-1) if hist[y]<=th and hist[y+1]>th]
lowers = [y for y in range(H-1) if hist[y]>th and hist[y+1]<=th]

rotated = cv2.cvtColor(rotated, cv2.COLOR_GRAY2BGR)
for y in uppers:
    cv2.line(rotated, (0,y), (W, y), (255,0,0), 1)

for y in lowers:
    cv2.line(rotated, (0,y), (W, y), (0,255,0), 1)

cv2.imwrite("result.png", rotated)
Run Code Online (Sandbox Code Playgroud)

最后结果:

在此输入图像描述