lea*_*ner 4 scala apache-spark apache-spark-mllib
嗨,我是新来的火花和斯卡拉.我在spark scala提示符下运行scala代码.该程序很好,它显示"定义模块MLlib",但它不在屏幕上打印任何东西.我做错了什么?有没有其他方法在scala shell中运行此程序spark并获得输出?
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.regression.LabeledPoint
object MLlib {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName(s"Book example: Scala")
val sc = new SparkContext(conf)
// Load 2 types of emails from text files: spam and ham (non-spam).
// Each line has text from one email.
val spam = sc.textFile("/home/training/Spam.txt")
val ham = sc.textFile("/home/training/Ham.txt")
// Create a HashingTF instance to map email text to vectors of 100 features.
val tf = new HashingTF(numFeatures = 100)
// Each email is split into words, and each word is mapped to one feature.
val spamFeatures = spam.map(email => tf.transform(email.split(" ")))
val hamFeatures = ham.map(email => tf.transform(email.split(" ")))
// Create LabeledPoint datasets for positive (spam) and negative (ham) examples.
val positiveExamples = spamFeatures.map(features => LabeledPoint(1, features))
val negativeExamples = hamFeatures.map(features => LabeledPoint(0, features))
val trainingData = positiveExamples ++ negativeExamples
trainingData.cache() // Cache data since Logistic Regression is an iterative algorithm.
// Create a Logistic Regression learner which uses the LBFGS optimizer.
val lrLearner = new LogisticRegressionWithSGD()
// Run the actual learning algorithm on the training data.
val model = lrLearner.run(trainingData)
// Test on a positive example (spam) and a negative one (ham).
// First apply the same HashingTF feature transformation used on the training data.
val posTestExample = tf.transform("O M G GET cheap stuff by sending money to ...".split(" "))
val negTestExample = tf.transform("Hi Dad, I started studying Spark the other ...".split(" "))
// Now use the learned model to predict spam/ham for new emails.
println(s"Prediction for positive test example: ${model.predict(posTestExample)}")
println(s"Prediction for negative test example: ${model.predict(negTestExample)}")
sc.stop()
}
}
Run Code Online (Sandbox Code Playgroud)
有几件事:
您object在Spark shell中定义了自己,因此main不会立即调用该类.在定义以下内容后,您必须明确地调用它object:
MLlib.main(Array())
事实上,如果你继续使用shell/REPL,你可以完全取消对象; 你可以直接定义这个功能.例如:
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.regression.LabeledPoint
def MLlib {
//the rest of your code
}
Run Code Online (Sandbox Code Playgroud)
但是,您不应该SparkContext在shell中初始化它.从文档:
在Spark shell中,已经在名为sc的变量中为您创建了一个特殊的解释器感知SparkContext.制作自己的SparkContext将无法正常工作
因此,您必须从代码中删除该位,或者将其编译到jar中并使用它运行它 spark-submit
| 归档时间: |
|
| 查看次数: |
662 次 |
| 最近记录: |