Fag*_*ain 2 stack-overflow f# tail-recursion continuation-passing kosaraju-algorithm
我正试图在大图上实施Kosaraju的算法作为任务的一部分[MOOC Algo I Stanford on Coursera]
https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm
当前代码适用于小图,但我在运行时执行期间遇到了Stack Overflow.
尽管已经阅读了F#中的Expert相关章节,或者网站上的其他可用示例和SO,我仍然没有得到如何使用continuation来解决这个问题
下面是通用的完整代码,但在执行DFSLoop1和递归函数DFSsub时它已经失败了.我认为我没有使函数tail递归[因为指令
t<-t+1
G.[n].finishingtime <- t
Run Code Online (Sandbox Code Playgroud)
?]
但我不明白我如何正确实施延续.
当仅考虑失败的部分时,DFSLoop1将我们将应用深度优先搜索的图形作为参数.我们需要记录完成时间作为算法的一部分,以便在第二个DFS循环(DFSLoop2)中进入算法的第二部分[当然我们在此之前就失败了].
open System
open System.Collections.Generic
open System.IO
let x = File.ReadAllLines "C:\Users\Fagui\Documents\GitHub\Learning Fsharp\Algo Stanford I\PA 4 - SCC.txt";;
// let x = File.ReadAllLines "C:\Users\Fagui\Documents\GitHub\Learning Fsharp\Algo Stanford I\PA 4 - test1.txt";;
// val x : string [] =
let splitAtTab (text:string)=
text.Split [|'\t';' '|]
let splitIntoKeyValue (A: int[]) =
(A.[0], A.[1])
let parseLine (line:string)=
line
|> splitAtTab
|> Array.filter (fun s -> not(s=""))
|> Array.map (fun s-> (int s))
|> splitIntoKeyValue
let y =
x |> Array.map parseLine
//val it : (int * int) []
type Children = int[]
type Node1 =
{children : Children ;
mutable finishingtime : int ;
mutable explored1 : bool ;
}
type Node2 =
{children : Children ;
mutable leader : int ;
mutable explored2 : bool ;
}
type DFSgraphcore = Dictionary<int,Children>
let directgraphcore = new DFSgraphcore()
let reversegraphcore = new DFSgraphcore()
type DFSgraph1 = Dictionary<int,Node1>
let reversegraph1 = new DFSgraph1()
type DFSgraph2 = Dictionary<int,Node2>
let directgraph2 = new DFSgraph2()
let AddtoGraph (G:DFSgraphcore) (n,c) =
if not(G.ContainsKey n) then
let node = [|c|]
G.Add(n,node)
else
let c'= G.[n]
G.Remove(n) |> ignore
G.Add (n, Array.append c' [|c|])
let inline swaptuple (a,b) = (b,a)
y|> Array.iter (AddtoGraph directgraphcore)
y|> Array.map swaptuple |> Array.iter (AddtoGraph reversegraphcore)
for i in directgraphcore.Keys do
if reversegraphcore.ContainsKey(i) then do
let node = {children = reversegraphcore.[i] ;
finishingtime = -1 ;
explored1 = false ;
}
reversegraph1.Add (i,node)
else
let node = {children = [||] ;
finishingtime = -1 ;
explored1 = false ;
}
reversegraph1.Add (i,node)
directgraphcore.Clear |> ignore
reversegraphcore.Clear |> ignore
// for i in reversegraph1.Keys do printfn "%d %A" i reversegraph1.[i].children
printfn "pause"
Console.ReadKey() |> ignore
let num_nodes =
directgraphcore |> Seq.length
let DFSLoop1 (G:DFSgraph1) =
let mutable t = 0
let mutable s = -1
let mutable k = num_nodes
let rec DFSsub (G:DFSgraph1)(n:int) (cont:int->int) =
//how to make it tail recursive ???
G.[n].explored1 <- true
// G.[n].leader <- s
for j in G.[n].children do
if not(G.[j].explored1) then DFSsub G j cont
t<-t+1
G.[n].finishingtime <- t
// end of DFSsub
for i in num_nodes .. -1 .. 1 do
printfn "%d" i
if not(G.[i].explored1) then do
s <- i
( DFSsub G i (fun s -> s) ) |> ignore
// printfn "%d %d" i G.[i].finishingtime
DFSLoop1 reversegraph1
printfn "pause"
Console.ReadKey() |> ignore
for i in directgraphcore.Keys do
let node = {children =
directgraphcore.[i]
|> Array.map (fun k -> reversegraph1.[k].finishingtime) ;
leader = -1 ;
explored2= false ;
}
directgraph2.Add (reversegraph1.[i].finishingtime,node)
let z = 0
let DFSLoop2 (G:DFSgraph2) =
let mutable t = 0
let mutable s = -1
let mutable k = num_nodes
let rec DFSsub (G:DFSgraph2)(n:int) (cont:int->int) =
G.[n].explored2 <- true
G.[n].leader <- s
for j in G.[n].children do
if not(G.[j].explored2) then DFSsub G j cont
t<-t+1
// G.[n].finishingtime <- t
// end of DFSsub
for i in num_nodes .. -1 .. 1 do
if not(G.[i].explored2) then do
s <- i
( DFSsub G i (fun s -> s) ) |> ignore
// printfn "%d %d" i G.[i].leader
DFSLoop2 directgraph2
printfn "pause"
Console.ReadKey() |> ignore
let table = [for i in directgraph2.Keys do yield directgraph2.[i].leader]
let results = table |> Seq.countBy id |> Seq.map snd |> Seq.toList |> List.sort |> List.rev
printfn "%A" results
printfn "pause"
Console.ReadKey() |> ignore
Run Code Online (Sandbox Code Playgroud)
这是一个带有简单图形示例的文本文件
1 4
2 8
3 6
4 7
5 2
6 9
7 1
8 5
8 6
9 7
9 3
Run Code Online (Sandbox Code Playgroud)
(造成溢出的那个是70Mo大,有大约900,000个节点)
编辑
首先澄清一些事情这里是"伪代码"
输入:相邻列表表示中的有向图G =(V,E).假设顶点V标记为1,2,3,.... ..,n.1.在所有弧的方向反转之后,让Grev表示图G. 2.在Grev上运行DFS-Loop子程序,根据给定的顺序处理顶点,以获得每个顶点v∈V的结束时间f(v).3.在G上运行DFS-Loop子程序,按f(v)的降序处理顶点,为每个顶点v∈V分配一个前导.4. G的强连通分量对应于共享共同领导者的G的顶点. 图2:SCC算法的最高级别.f值和领导者分别在对DFS-Loop的第一次和第二次调用中计算(见下文).
输入:相邻列表表示中的有向图G =(V,E).1.将全局变量t初始化为0. [这将跟踪已经完全探索的顶点数.] 2.将全局变量s初始化为NULL.[这跟踪调用最后一个DFS调用的顶点.] 3.对于i = n downto 1:[在第一次调用中,顶点标记为1,2,... ..,n任意.在第二次调用中,顶点由第一次调用的f(v)值标记.](a)如果我尚未探索:i.设s:= i ii.DFS(G,i) 图3:DFS-Loop子程序.
输入:有向图G =(V,E),在邻接列表表示中,以及源顶点i∈V.把我标记为探索.[它仍然在DFS-Loop调用的整个持续时间内进行探索.] 2.设置leader(i):= s 3.对于每个弧(i,j)∈G:(a)如果j尚未探索:i.DFS(G,j)4.t + + 5.设置f(i):= t 图4:DFS子程序.仅需要在第一次调用DFS-Loop期间计算f值,并且只需要在第二次调用DFS-Loop期间计算前导值.
编辑 我修改了代码,在经验丰富的程序员(一个没有F#经验的lisper)的帮助下,稍微简化了第一部分,以便更快地获得一个示例而不必为此讨论烦恼不相关的代码.
代码只关注算法的一半,运行DFS一次以获得反转树的完成时间.
这是代码的第一部分,只是为了创建一个小例子,y是原始树.元组的第一个元素是父元素,第二个元素是子元素.但我们将使用反向树
open System
open System.Collections.Generic
open System.IO
let x = File.ReadAllLines "C:\Users\Fagui\Documents\GitHub\Learning Fsharp\Algo Stanford I\PA 4 - SCC.txt";;
// let x = File.ReadAllLines "C:\Users\Fagui\Documents\GitHub\Learning Fsharp\Algo Stanford I\PA 4 - test1.txt";;
// val x : string [] =
let splitAtTab (text:string)=
text.Split [|'\t';' '|]
let splitIntoKeyValue (A: int[]) =
(A.[0], A.[1])
let parseLine (line:string)=
line
|> splitAtTab
|> Array.filter (fun s -> not(s=""))
|> Array.map (fun s-> (int s))
|> splitIntoKeyValue
// let y =
// x |> Array.map parseLine
//let y =
// [|(1, 4); (2, 8); (3, 6); (4, 7); (5, 2); (6, 9); (7, 1); (8, 5); (8, 6);
// (9, 7); (9, 3)|]
// let y = Array.append [|(1,1);(1,2);(2,3);(3,1)|] [|for i in 4 .. 10000 do yield (i,4)|]
let y = Array.append [|(1,1);(1,2);(2,3);(3,1)|] [|for i in 4 .. 99999 do yield (i,i+1)|]
//val it : (int * int) []
type Children = int list
type Node1 =
{children : Children ;
mutable finishingtime : int ;
mutable explored1 : bool ;
}
type Node2 =
{children : Children ;
mutable leader : int ;
mutable explored2 : bool ;
}
type DFSgraphcore = Dictionary<int,Children>
let directgraphcore = new DFSgraphcore()
let reversegraphcore = new DFSgraphcore()
type DFSgraph1 = Dictionary<int,Node1>
let reversegraph1 = new DFSgraph1()
let AddtoGraph (G:DFSgraphcore) (n,c) =
if not(G.ContainsKey n) then
let node = [c]
G.Add(n,node)
else
let c'= G.[n]
G.Remove(n) |> ignore
G.Add (n, List.append c' [c])
let inline swaptuple (a,b) = (b,a)
y|> Array.iter (AddtoGraph directgraphcore)
y|> Array.map swaptuple |> Array.iter (AddtoGraph reversegraphcore)
// définir reversegraph1 = ... with....
for i in reversegraphcore.Keys do
let node = {children = reversegraphcore.[i] ;
finishingtime = -1 ;
explored1 = false ;
}
reversegraph1.Add (i,node)
for i in directgraphcore.Keys do
if not(reversegraphcore.ContainsKey(i)) then do
let node = {children = [] ;
finishingtime = -1 ;
explored1 = false ;
}
reversegraph1.Add (i,node)
directgraphcore.Clear |> ignore
reversegraphcore.Clear |> ignore
// for i in reversegraph1.Keys do printfn "%d %A" i reversegraph1.[i].children
printfn "pause"
Console.ReadKey() |> ignore
let num_nodes =
directgraphcore |> Seq.length
Run Code Online (Sandbox Code Playgroud)
所以基本上图是(1-> 2-> 3-> 1)::( 4-> 5-> 6-> 7-> 8 - > ....-> 99999-> 10000)和反向图是(1-> 3-> 2-> 1)::(10000-> 9999 - > ....-> 4)
这是以直接风格编写的主要代码
//////////////////// main code is below ///////////////////
let DFSLoop1 (G:DFSgraph1) =
let mutable t = 0
let mutable s = -1
let rec iter (n:int) (f:'a->unit) (list:'a list) : unit =
match list with
| [] -> (t <- t+1) ; (G.[n].finishingtime <- t)
| x::xs -> f x ; iter n f xs
let rec DFSsub (G:DFSgraph1) (n:int) : unit =
let my_f (j:int) : unit = if not(G.[j].explored1) then (DFSsub G j)
G.[n].explored1 <- true
iter n my_f G.[n].children
for i in num_nodes .. -1 .. 1 do
// printfn "%d" i
if not(G.[i].explored1) then do
s <- i
DFSsub G i
printfn "%d %d" i G.[i].finishingtime
// End of DFSLoop1
DFSLoop1 reversegraph1
printfn "pause"
Console.ReadKey() |> ignore
Run Code Online (Sandbox Code Playgroud)
它不是尾递归,所以我们使用continuation,这里是适用于CPS风格的相同代码:
//////////////////// main code is below ///////////////////
let DFSLoop1 (G:DFSgraph1) =
let mutable t = 0
let mutable s = -1
let rec iter_c (n:int) (f_c:'a->(unit->'r)->'r) (list:'a list) (cont: unit->'r) : 'r =
match list with
| [] -> (t <- t+1) ; (G.[n].finishingtime <- t) ; cont()
| x::xs -> f_c x (fun ()-> iter_c n f_c xs cont)
let rec DFSsub (G:DFSgraph1) (n:int) (cont: unit->'r) : 'r=
let my_f_c (j:int)(cont:unit->'r):'r = if not(G.[j].explored1) then (DFSsub G j cont) else cont()
G.[n].explored1 <- true
iter_c n my_f_c G.[n].children cont
for i in maxnum_nodes .. -1 .. 1 do
// printfn "%d" i
if not(G.[i].explored1) then do
s <- i
DFSsub G i id
printfn "%d %d" i G.[i].finishingtime
DFSLoop1 reversegraph1
printfn "faré"
printfn "pause"
Console.ReadKey() |> ignore
Run Code Online (Sandbox Code Playgroud)
两个代码编译并为小例子(评论中的一个)或我们正在使用的同一个树提供相同的结果,具有较小的大小(1000而不是100000)
所以我不认为这是算法中的一个错误,我们有相同的树形结构,只是一棵大树造成了问题.在我们看来,延续写得很好.我们明确地输入了代码.并且在所有情况下所有通话都以延续结束......
我们正在寻找专家建议!谢谢 !!!
我没有尝试理解整个代码片段,因为它相当长,但你肯定需要for用继续传递样式实现的迭代替换循环.就像是:
let rec iterc f cont list =
match list with
| [] -> cont ()
| x::xs -> f x (fun () -> iterc f cont xs)
Run Code Online (Sandbox Code Playgroud)
我不理解cont你的DFSub函数的目的(它永远不会被调用,是吗?),但基于continuation的版本看起来大致如下:
let rec DFSsub (G:DFSgraph2)(n:int) cont =
G.[n].explored2 <- true
G.[n].leader <- s
G.[n].children
|> iterc
(fun j cont -> if not(G.[j].explored2) then DFSsub G j cont else cont ())
(fun () -> t <- t + 1)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
478 次 |
| 最近记录: |