Mik*_*ike 8 php combinations combinatorics
我试图以编程方式解决这个问题时遇到了一些麻烦.这不是我正在做的事情,但为了简化事情,我们说有一定数量的球和一定数量的人.每个人必须选择一个球,人们可能只限于他们可以选择的球类型.目标是确定人们在消除所有不可能的组合后必须选择哪些选项.
在一个简单的例子中,说我们有两个人,一个红球和一个绿球.人1可以选择任一球,但是人2只能选择绿球.这可以说明如下:
Person 1: RG
Person 2: G
Run Code Online (Sandbox Code Playgroud)
因为我们知道人2必须选择绿球,这意味着1人不能选择那个球,因此必须选择红球.所以这可以简化为:
Person 1: R
Person 2: G
Run Code Online (Sandbox Code Playgroud)
所以在这种情况下,我们确切地知道每个人会选择什么.
现在让我们添加一些复杂性.现在我们有4个人需要从2个红球,1个绿球和4个蓝球中选择.人1可以选择任何球,人2和3可以选择红色或绿色球,而人4必须选择红色球.所以我们有以下选择:
Person 1: RRGBBBB
Person 2: RRG
Person 3: RRG
Person 4: RR
Run Code Online (Sandbox Code Playgroud)
由于人4只有一种选择,我们知道该人必须选择一个红球.因此,我们可以从所有其他人中消除1个红球:
Person 1: RGBBBB
Person 2: RG
Person 3: RG
Person 4: RR
Run Code Online (Sandbox Code Playgroud)
然而,这是它变得非常棘手的地方.我们可以看到,第2和第3人必须选择一个红球和一个绿球,我们只是不知道哪一个会选择哪一个.但是,由于我们每个球只剩下1个,所以红色和绿色也可以作为选项从第1个人中删除:
Person 1: BBBB
Person 2: RG
Person 3: RG
Person 4: RR
Run Code Online (Sandbox Code Playgroud)
现在,我们可以使用以下选项从每个条目中删除重复项:
Person 1: B
Person 2: RG
Person 3: RG
Person 4: R
Run Code Online (Sandbox Code Playgroud)
我们知道人1和人4的选择,而人2和3可以选择红色和绿色.
为了解决这个问题,我所做的就是循环遍历所有人,首先如果人们只有一个球类型,从阵列中删除该人并将其放入结果数组中(因为我知道这是那个人必须选择的)然后如果存在,则从阵列中的每个其他人移除该球类型之一.
在此之后,在我看来,规则是:
如果有多
$n个人拥有相同$n数量的选项(或其中一部分),则可以从所有其他人中删除这些选项,其中$n小于总人数.
所以我所做的是再次遍历人们并检查具有相同选项的其他人(或这些选项的子集),如果这等于该人的选项总数,请从选项中删除它们所有其他人.
这是我到目前为止解决这两种情况的方法:
// The quantity of each ball
$balls = array(
'r' => 1,
'g' => 1,
'b' => 1,
'k' => 1,
);
// The options available for each person
$options = array(
array('r', 'g', 'b', 'k'),
array('r', 'g'),
array('r', 'b'),
array('b', 'g'),
);
// Put both of these together into one array
$people = [];
foreach ($options as $option) {
$person = [];
foreach ($option as $ball_key) {
$person[$ball_key] = $balls[$ball_key];
}
$people[] = $person;
}
print_r($people);
// This produces an array like:
// Array
// (
// [0] => Array
// (
// [r] => 2
// [g] => 1
// [b] => 4
// )
//
// [1] => Array
// (
// [r] => 2
// [g] => 1
// )
//
// [2] => Array
// (
// [r] => 2
// [g] => 1
// )
//
// [3] => Array
// (
// [r] => 2
// )
//
// )
// This will be used to hold the final result
$results = [];
do {
// If anything changes, this needs to be set to true. Any time anything
// changes we loop through everything again in case it caused a cascading
// effect
$has_change = false;
// Step 1:
// Find out if there are any people who have only one option and remove it
// from the array and add it to the result and subtract one from all other
// people with this option
foreach ($people as $p_index => $p_options) {
if (count($p_options) === 1) {
$color = key($p_options);
foreach ($people as $p_index_tmp => $p_options_tmp) {
// It's the current person, so skip it
if ($p_index_tmp === $p_index) {
continue;
}
if (isset($p_options_tmp[$color])) {
// Subtract 1 from this color from this person and if zero,
// remove it.
if (--$people[$p_index_tmp][$color] === 0) {
unset($people[$p_index_tmp][$color]);
}
$has_change = true;
}
}
// Add to results array and remove from people array
$results[$p_index] = array($color => 1);
unset($people[$p_index]);
}
}
// Step 2:
// If there are $n number of people who all have the same $n number of
// options (or a subset of them), these options can be removed
// from all other people, where $n is less than the total number of people
foreach ($people as $p_index => $p_options) {
$num_options = array_sum($p_options);
if ($num_options < count($people)) {
// Look for other people with no different options from the ones
// that this person has
$people_with_same_options = [];
foreach ($people as $p_index_tmp => $p_options_tmp) {
foreach (array_keys($p_options_tmp) as $color) {
if (array_search($color, array_keys($p_options)) === false) {
// This color was not found in the options, so we can
// skip this person.
// (Make sure we break out of both foreach loops)
continue 2;
}
}
// This person has all the same options, so append to the array
$people_with_same_options[] = $p_index_tmp;
}
// Remove these options from the other people if the number of
// people with only these options is equal to the number of options
if (count($people_with_same_options) === $num_options) {
foreach ($people as $p_index_tmp => $p_options_tmp) {
if (array_search($p_index_tmp, $people_with_same_options) === false) {
foreach (array_keys($p_options) as $option) {
unset($people[$p_index_tmp][$option]);
$has_change = true;
}
}
}
}
}
}
}
while ($has_change === true);
// Combine any remaining people into the result and sort it
$results = $results + $people;
ksort($results);
print_r($results);
Run Code Online (Sandbox Code Playgroud)
这会产生以下结果:
Array
(
[0] => Array
(
[b] => 1
)
[1] => Array
(
[r] => 1
[g] => 1
)
[2] => Array
(
[r] => 1
[g] => 1
)
[3] => Array
(
[r] => 1
)
)
Run Code Online (Sandbox Code Playgroud)
此示例不适用于上述代码.假设有1个红球,1个绿球,1个蓝球,1个黄球和4个人.人1可以选择任何球,人2可以选择红色或绿色,人3可以选择绿色或蓝色,人4可以选择红色或蓝色.
在视觉上这看起来像:
Person 1: RGBY
Person 2: RG
Person 3: GB
Person 4: RB
Run Code Online (Sandbox Code Playgroud)
由于红色,绿色和蓝色3种颜色是2,3和4人的唯一选择,因此它们完全包含在这3个人中,因此它们都可以从人1中消除,这意味着人1必须选择黄色.如果第一个人选择除了黄色之外的任何东西,那么其他人就不可能选择他们的球.
把它放到我的PHP程序中,我有这些输入值:
// The quantity of each ball
$balls = array(
'r' => 1,
'g' => 1,
'b' => 1,
'y' => 1,
);
// The options available for each person
$options = array(
array('r', 'g', 'b', 'y'),
array('r', 'g'),
array('r', 'b'),
array('b', 'g'),
);
Run Code Online (Sandbox Code Playgroud)
但是我想不出如何循环查找这样的案例而不迭代每个可能的人组合.有什么想法可以做到这一点?
我最终决定做的是半蛮力,但是我对其进行了调整,以便它不必遍历每个组合,因此在大多数情况下,迭代次数应该比每个可能的组合少得多。
组合总数等于exp(2,count(balls))(即 2^{球类型}),因此如果我们有 20 种球,那么如果我们要检查每一种球,则必须检查 1048576 种不同的球组合。不仅迭代次数太多,实际上我之前就已经用完了内存,只有 16 个球的颜色。
要获得每种可能的组合,您可以使用此函数(源代码):
function getAllCombinations($balls) {
// initialize by adding the empty set
$results = array(array( ));
foreach ($balls as $color => $number) {
foreach ($results as $combination) {
$results[] = array_merge(array($color), $combination);
}
}
return $results;
}
Run Code Online (Sandbox Code Playgroud)
但是,如果我们回到原来的规则:
如果有 $n 人都具有相同的 $n 个选项(或其子集),则可以从所有其他人中删除这些选项,其中 $n 小于总人数。
正如我们所看到的,如果我们已经超出了$n选项数量,我们可以跳过任何未来的迭代。请注意,当我们有多个相同颜色的球时,在此函数中算作多个球。
一旦我们获得了不同的可能子集,我们就会循环遍历这些人,看看是否有$n不同的人使用该子集,并从所有其他人中删除这些值。这就是我最后想到的:
/**
* This just gets a sum of the number of balls a person can choose
* from
*/
function getNumberOfOptions($person, $balls) {
$n = 0;
foreach ($person as $allowed_ball) {
$n += $balls[$allowed_ball];
}
return $n;
}
/**
* This function finds all the subsets of the balls array that we can look for
* in the people array later to remove options from them
*/
function getBallSubsets($balls, $max_n) {
// initialize by adding the empty set
$results = array(array( ));
// Remove all balls that have more options than max_n
foreach ($balls as $color => $number) {
if ($number > $max_n) {
unset($balls[$color]);
}
}
// $n = 0;
foreach ($balls as $color => $number) {
foreach ($results as $combination) {
// $n++;
$set = array_merge(array($color), $combination);
if (getNumberOfOptions($set, $balls) <= $max_n) {
$results[] = $set;
}
}
}
// echo $n; exit;
return $results;
}
function removeFromOthers($colors, $people, $skip_indexes) {
foreach ($people as $p_index => $person) {
if (array_search($p_index, $skip_indexes) === false) {
foreach ($colors as $color) {
$index = array_search($color, $person);
if ($index !== false) {
unset($people[$p_index][$index]);
}
}
}
}
return $people;
}
function getOptions($people, $balls) {
$ball_subsets = getBallSubsets($balls, count($people) -1);
foreach ($ball_subsets as $sub) {
$num_colors = count($sub);
$num_people = getNumberOfOptions($sub, $balls);
// Loop through people and if we find $n people with only the elements
// from this subset, we can remove these elements from all other people
$found = [];
$found_colors = [];
foreach ($people as $p_index => $person_arr) {
foreach ($person_arr as $color) {
// Contains another color, so skip this one
if (array_search($color, $sub) === false) {
continue 2;
}
}
$found[] = $p_index;
foreach ($person_arr as $color) {
if (array_search($color, $found_colors) === false) {
$found_colors[] = $color;
}
}
}
if (count($found) === $num_people && count($found_colors) == $num_colors) {
$people = removeFromOthers($sub, $people, $found);
}
else {
unset($found);
}
}
return $people;
}
// The quantity of each ball
$balls = array(
'r' => 3,
'g' => 2,
'b' => 1,
'k' => 16,
);
// The options available for each person
$people = array(
array('r', 'g', 'b', 'k'),
array('r', 'g'),
array('r', 'b'),
array('b', 'g'),
);
print_r($people);
$options = getOptions($people, $balls);
print_r($options);
Run Code Online (Sandbox Code Playgroud)
这似乎适用于我尝试过的任何值。在上面的示例中,我们有 4 种不同的球颜色(2^4 = 16 种总组合),但是我们只需要在函数中进行 6 次迭代getBallSubsets(),因此这比暴力破解每种可能的组合要高效得多。
| 归档时间: |
|
| 查看次数: |
110 次 |
| 最近记录: |