use*_*197 5 python pandas apache-spark apache-spark-sql pyspark
我正在阅读一个文件PySpark
并形成rdd
它.然后我将它转换为正常然后转换dataframe
为pandas dataframe
.我遇到的问题是我的输入文件中有标题行,我想将其作为数据帧列的标题,但它们作为附加行而不是标题读入.这是我目前的代码:
def extract(line):
return line
input_file = sc.textFile('file1.txt').zipWithIndex().filter(lambda (line,rownum): rownum>=0).map(lambda (line, rownum): line)
input_data = (input_file
.map(lambda line: line.split(";"))
.filter(lambda line: len(line) >=0 )
.map(extract)) # Map to tuples
df_normal = input_data.toDF()
df= df_normal.toPandas()
Run Code Online (Sandbox Code Playgroud)
现在,当我看df
,然后文本文件的标题行成为第一行dataframe
并没有额外的报头df
与0,1,2...
报头.如何将第一行作为标题?
des*_*aut 15
有几种方法可以做到这一点,具体取决于数据的确切结构.由于您没有提供任何详细信息,我将尝试使用nyctaxicab.csv
您可以下载的数据文件来显示它.
如果您的文件采用csv
格式,则应使用spark-csv
Databricks提供的相关软件包.无需明确下载,只需运行pyspark
如下:
$ pyspark --packages com.databricks:spark-csv_2.10:1.3.0
Run Code Online (Sandbox Code Playgroud)
然后
>>> from pyspark.sql import SQLContext
>>> from pyspark.sql.types import *
>>> sqlContext = SQLContext(sc)
>>> df = sqlContext.read.load('file:///home/vagrant/data/nyctaxisub.csv',
format='com.databricks.spark.csv',
header='true',
inferSchema='true')
>>> df.count()
249999
Run Code Online (Sandbox Code Playgroud)
该文件包含250,000行,包括标题,因此249,999是正确的实际记录数.这是模式,由包自动推断:
>>> df.dtypes
[('_id', 'string'),
('_rev', 'string'),
('dropoff_datetime', 'string'),
('dropoff_latitude', 'double'),
('dropoff_longitude', 'double'),
('hack_license', 'string'),
('medallion', 'string'),
('passenger_count', 'int'),
('pickup_datetime', 'string'),
('pickup_latitude', 'double'),
('pickup_longitude', 'double'),
('rate_code', 'int'),
('store_and_fwd_flag', 'string'),
('trip_distance', 'double'),
('trip_time_in_secs', 'int'),
('vendor_id', 'string')]
Run Code Online (Sandbox Code Playgroud)
您可以在我的相关博客文章中查看更多详细信息.
如果由于某种原因,您无法使用该spark-csv
软件包,则必须从数据中减去第一行,然后使用它来构建模式.这是一般性的想法,您可以在我的另一篇博文中再次找到包含代码详细信息的完整示例:
>>> taxiFile = sc.textFile("file:///home/ctsats/datasets/BDU_Spark/nyctaxisub.csv")
>>> taxiFile.count()
250000
>>> taxiFile.take(5)
[u'"_id","_rev","dropoff_datetime","dropoff_latitude","dropoff_longitude","hack_license","medallion","passenger_count","pickup_datetime","pickup_latitude","pickup_longitude","rate_code","store_and_fwd_flag","trip_distance","trip_time_in_secs","vendor_id"',
u'"29b3f4a30dea6688d4c289c9672cb996","1-ddfdec8050c7ef4dc694eeeda6c4625e","2013-01-11 22:03:00",+4.07033460000000E+001,-7.40144200000000E+001,"A93D1F7F8998FFB75EEF477EB6077516","68BC16A99E915E44ADA7E639B4DD5F59",2,"2013-01-11 21:48:00",+4.06760670000000E+001,-7.39810790000000E+001,1,,+4.08000000000000E+000,900,"VTS"',
u'"2a80cfaa425dcec0861e02ae44354500","1-b72234b58a7b0018a1ec5d2ea0797e32","2013-01-11 04:28:00",+4.08190960000000E+001,-7.39467470000000E+001,"64CE1B03FDE343BB8DFB512123A525A4","60150AA39B2F654ED6F0C3AF8174A48A",1,"2013-01-11 04:07:00",+4.07280540000000E+001,-7.40020370000000E+001,1,,+8.53000000000000E+000,1260,"VTS"',
u'"29b3f4a30dea6688d4c289c96758d87e","1-387ec30eac5abda89d2abefdf947b2c1","2013-01-11 22:02:00",+4.07277180000000E+001,-7.39942860000000E+001,"2D73B0C44F1699C67AB8AE322433BDB7","6F907BC9A85B7034C8418A24A0A75489",5,"2013-01-11 21:46:00",+4.07577480000000E+001,-7.39649810000000E+001,1,,+3.01000000000000E+000,960,"VTS"',
u'"2a80cfaa425dcec0861e02ae446226e4","1-aa8b16d6ae44ad906a46cc6581ffea50","2013-01-11 10:03:00",+4.07643050000000E+001,-7.39544600000000E+001,"E90018250F0A009433F03BD1E4A4CE53","1AFFD48CC07161DA651625B562FE4D06",5,"2013-01-11 09:44:00",+4.07308080000000E+001,-7.39928280000000E+001,1,,+3.64000000000000E+000,1140,"VTS"']
# Construct the schema from the header
>>> header = taxiFile.first()
>>> header
u'"_id","_rev","dropoff_datetime","dropoff_latitude","dropoff_longitude","hack_license","medallion","passenger_count","pickup_datetime","pickup_latitude","pickup_longitude","rate_code","store_and_fwd_flag","trip_distance","trip_time_in_secs","vendor_id"'
>>> schemaString = header.replace('"','') # get rid of the double-quotes
>>> schemaString
u'_id,_rev,dropoff_datetime,dropoff_latitude,dropoff_longitude,hack_license,medallion,passenger_count,pickup_datetime,pickup_latitude,pickup_longitude,rate_code,store_and_fwd_flag,trip_distance,trip_time_in_secs,vendor_id'
>>> fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split(',')]
>>> schema = StructType(fields)
# Subtract header and use the above-constructed schema:
>>> taxiHeader = taxiFile.filter(lambda l: "_id" in l) # taxiHeader needs to be an RDD - the string we constructed above will not do the job
>>> taxiHeader.collect() # for inspection purposes only
[u'"_id","_rev","dropoff_datetime","dropoff_latitude","dropoff_longitude","hack_license","medallion","passenger_count","pickup_datetime","pickup_latitude","pickup_longitude","rate_code","store_and_fwd_flag","trip_distance","trip_time_in_secs","vendor_id"']
>>> taxiNoHeader = taxiFile.subtract(taxiHeader)
>>> taxi_df = taxiNoHeader.toDF(schema) # Spark dataframe
>>> import pandas as pd
>>> taxi_DF = taxi_df.toPandas() # pandas dataframe
Run Code Online (Sandbox Code Playgroud)
为简洁起见,此处所有列最终都是类型string
,但在博客文章中我详细说明并解释如何进一步细化特定字段的所需数据类型(和名称).
简单的答案将被设置 header='true'
例如:
df = spark.read.csv('housing.csv', header='true')
Run Code Online (Sandbox Code Playgroud)
或者
df = spark.read.option("header","true").format("csv").schema(myManualSchema).load("maestraDestacados.csv")
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
26634 次 |
最近记录: |