Lud*_*wik 7 r contour ggplot2 ggtern
我正在使用ggtern以三级绘图的形式绘制一个大型数据集(参见下面的示例).
直到某个数据大小,一切都很完美,因为我使用的是geom_density_tern().因为我想要想象一个更加复杂的数据集加载所有它并且用ggplot渲染变得不可能(在内存方面的限制).我想也许可以通过计算单独计算的kde2d矩阵的结果来解决这个问题.那就是我被困住的地方.我想知道是否有可能在ggtern中做到这一点?
在任何情况下,我都添加了一个最小的数据结构和绘图,我现在使用它.
require(ggplot2)
require(ggtern)
set.seed(1)
mydata <- data.frame(
x = runif(100, min = 0.25, max = 0.5),
y = runif(100, min = 0.1, max = 0.4),
z = runif(100, min = 0.5, max = 0.7))
plot <- ggtern() +
theme_bw() +
theme_hidetitles() +
geom_density_tern(data = mydata,
aes(x = x, y = y, z = z, alpha = ..level.. ),
size = 0.1, linetype = "solid", fill = "blue")+
geom_point(data = mydata,
aes(x = x, y = y, z = z), alpha = 0.8, size = 1)
plot
Run Code Online (Sandbox Code Playgroud)
这些额外的线重现了三元协调系统中的密度图:
library(MASS)
dataTern = transform_tern_to_cart(mydata$x,mydata$y,mydata$z)
dataTernDensity <- kde2d(x=dataTern$x, y=dataTern$y, lims = c(range(0,1), range(0,1)), n = 400)
image(dataTernDensity$x, dataTernDensity$y, dataTernDensity$z)
points(dataTern$x, dataTern$y, pch = 20, cex = 0.1)
segments(x0 = 0, y0 = 0, x1 = 0.5, y1 = 1, col= "white")
segments(x0 = 0, y0 = 0, x1 = 1, y1 = 0, col= "white")
segments(x0 = 0.5, y0 = 1, x1 = 1, y1 = 0, col= "white")
Run Code Online (Sandbox Code Playgroud)
并获得此图:
在此先感谢您的帮助!
我们可以使用 Stat 中通常在幕后使用的代码来解决这个问题。ggtern 2.0.1
几天前,在完全重写软件包以兼容之后,我刚刚发布并在 CRAN 上发布ggplot2 2.0.0
,我熟悉了一种可能适合您需求的方法。ggtern 2.0.X
顺便说一句,为了满足您的兴趣,可以在此处找到新功能的摘要:
请在下面找到您的问题的解决方案和工作代码,这是在等距对数比空间上计算的密度估计。
#Required Libraries
library(ggtern)
library(ggplot2)
library(compositions)
library(MASS)
library(scales)
set.seed(1) #For Reproduceability
mydata <- data.frame(
x = runif(100, min = 0.25, max = 0.5),
y = runif(100, min = 0.1, max = 0.4),
z = runif(100, min = 0.5, max = 0.7))
#VARIABLES
nlevels = 7
npoints = 200
expand = 0.5
#Prepare the data, put on isometric logratio basis
df = data.frame(acomp(mydata)); colnames(df) = colnames(mydata)
data = data.frame(ilr(df)); colnames(data) = c('x','y')
#Prepare the Density Estimate Data
h.est = c(MASS::bandwidth.nrd(data$x), MASS::bandwidth.nrd(data$y))
lims = c(expand_range(range(data$x),expand),expand_range(range(data$y),expand))
dens = MASS::kde2d(data$x,data$y,h=h.est,n=npoints,lims=lims)
#-------------------------------------------------------------
#<<<<< Presumably OP has data at this point,
# and so the following should achieve solution
#-------------------------------------------------------------
#Generate the contours via ggplot2's non-exported function
lines = ggplot2:::contour_lines(data.frame(expand.grid(x = dens$x, y = dens$y),
z=as.vector(dens$z),group=1),
breaks=pretty(dens$z,n=nlevels))
#Transform back to ternary space
lines[,names(mydata)] = data.frame(ilrInv(lines[,names(data)]))
#Render the plot
ggtern(data=lines,aes(x,y,z)) +
theme_dark() +
theme_legend_position('topleft') +
geom_polygon(aes(group=group,fill=level),colour='grey50') +
scale_fill_gradient(low='green',high='red') +
labs(fill = "Density",
title = "Example Manual Contours from Density Estimate Data")
Run Code Online (Sandbox Code Playgroud)