Lan*_*Guo 8 numpy julia argmax
在Python中,有numpy.argmax:
In [7]: a = np.random.rand(5,3)
In [8]: a
Out[8]:
array([[ 0.00108039, 0.16885304, 0.18129883],
[ 0.42661574, 0.78217538, 0.43942868],
[ 0.34321459, 0.53835544, 0.72364813],
[ 0.97914267, 0.40773394, 0.36358753],
[ 0.59639274, 0.67640815, 0.28126232]])
In [10]: np.argmax(a,axis=1)
Out[10]: array([2, 1, 2, 0, 1])
Run Code Online (Sandbox Code Playgroud)
是否有朱莉娅类似于Numpy的argmax?我只找到了一个indmax,它只接受一个向量,而不是二维数组np.argmax.
tho*_*oly 10
最快的实现通常是findmax(如果您愿意,可以一次减少多个维度)以及ind2sub:
julia> a=rand(5,3)
5x3 Array{Float64,2}:
0.283078 0.202384 0.667838
0.366416 0.671204 0.572707
0.77384 0.919672 0.127949
0.873921 0.9334 0.0210074
0.319042 0.200109 0.0944871
julia> mxval, mxindx = findmax(a, 2)
(
5x1 Array{Float64,2}:
0.667838
0.671204
0.919672
0.9334
0.319042,
5x1 Array{Int64,2}:
11
7
8
9
5)
julia> ind2sub(size(a), vec(mxindx))[2]
5-element Array{Int64,1}:
3
2
2
2
1
Run Code Online (Sandbox Code Playgroud)