rou*_*uk1 64 python numpy amazon-web-services aws-lambda
我想使用AWS Lambda
功能生成视频.
我现在有以下过程来构建我的Lambda
函数:
触发一个Amazon Linux EC2
实例并以root身份运行它:
#! /usr/bin/env bash
# Install the SciPy stack on Amazon Linux and prepare it for AWS Lambda
yum -y update
yum -y groupinstall "Development Tools"
yum -y install blas --enablerepo=epel
yum -y install lapack --enablerepo=epel
yum -y install atlas-sse3-devel --enablerepo=epel
yum -y install Cython --enablerepo=epel
yum -y install python27
yum -y install python27-numpy.x86_64
yum -y install python27-numpy-f2py.x86_64
yum -y install python27-scipy.x86_64
/usr/local/bin/pip install --upgrade pip
mkdir -p /home/ec2-user/stack
/usr/local/bin/pip install moviepy -t /home/ec2-user/stack
cp -R /usr/lib64/python2.7/dist-packages/numpy /home/ec2-user/stack/numpy
cp -R /usr/lib64/python2.7/dist-packages/scipy /home/ec2-user/stack/scipy
tar -czvf stack.tgz /home/ec2-user/stack/*
Run Code Online (Sandbox Code Playgroud)
我将得到的tarball压缩到我的笔记本电脑上.然后运行此脚本以构建zip存档.
#! /usr/bin/env bash
mkdir tmp
rm lambda.zip
tar -xzf stack.tgz -C tmp
zip -9 lambda.zip process_movie.py
zip -r9 lambda.zip *.ttf
cd tmp/home/ec2-user/stack/
zip -r9 ../../../../lambda.zip *
Run Code Online (Sandbox Code Playgroud)
process_movie.py
脚本目前只是一个测试,看看堆栈是否正常:
def make_movie(event, context):
import os
print(os.listdir('.'))
print(os.listdir('numpy'))
try:
import scipy
except ImportError:
print('can not import scipy')
try:
import numpy
except ImportError:
print('can not import numpy')
try:
import moviepy
except ImportError:
print('can not import moviepy')
Run Code Online (Sandbox Code Playgroud)
然后我将生成的存档上传到S3作为我的lambda
函数的源.当我测试该功能时,我得到以下内容callstack
:
START RequestId: 36c62b93-b94f-11e5-9da7-83f24fc4b7ca Version: $LATEST
['tqdm', 'imageio-1.4.egg-info', 'decorator.pyc', 'process_movie.py', 'decorator-4.0.6.dist-info', 'imageio', 'moviepy', 'tqdm-3.4.0.dist-info', 'scipy', 'numpy', 'OpenSans-Regular.ttf', 'decorator.py', 'moviepy-0.2.2.11.egg-info']
['add_newdocs.pyo', 'numarray', '__init__.py', '__config__.pyc', '_import_tools.py', 'setup.pyo', '_import_tools.pyc', 'doc', 'setupscons.py', '__init__.pyc', 'setup.py', 'version.py', 'add_newdocs.py', 'random', 'dual.pyo', 'version.pyo', 'ctypeslib.pyc', 'version.pyc', 'testing', 'dual.pyc', 'polynomial', '__config__.pyo', 'f2py', 'core', 'linalg', 'distutils', 'matlib.pyo', 'tests', 'matlib.pyc', 'setupscons.pyc', 'setup.pyc', 'ctypeslib.py', 'numpy', '__config__.py', 'matrixlib', 'dual.py', 'lib', 'ma', '_import_tools.pyo', 'ctypeslib.pyo', 'add_newdocs.pyc', 'fft', 'matlib.py', 'setupscons.pyo', '__init__.pyo', 'oldnumeric', 'compat']
can not import scipy
'module' object has no attribute 'core': AttributeError
Traceback (most recent call last):
File "/var/task/process_movie.py", line 91, in make_movie
import numpy
File "/var/task/numpy/__init__.py", line 122, in <module>
from numpy.__config__ import show as show_config
File "/var/task/numpy/numpy/__init__.py", line 137, in <module>
import add_newdocs
File "/var/task/numpy/numpy/add_newdocs.py", line 9, in <module>
from numpy.lib import add_newdoc
File "/var/task/numpy/lib/__init__.py", line 13, in <module>
from polynomial import *
File "/var/task/numpy/lib/polynomial.py", line 11, in <module>
import numpy.core.numeric as NX
AttributeError: 'module' object has no attribute 'core'
END RequestId: 36c62b93-b94f-11e5-9da7-83f24fc4b7ca
REPORT RequestId: 36c62b93-b94f-11e5-9da7-83f24fc4b7ca Duration: 112.49 ms Billed Duration: 200 ms Memory Size: 1536 MB Max Memory Used: 14 MB
Run Code Online (Sandbox Code Playgroud)
我不明白为什么python没有找到文件夹结构中存在的核心目录.
编辑:
在@jarmod建议之后我将lambda
函数简化为:
def make_movie(event, context):
print('running make movie')
import numpy
Run Code Online (Sandbox Code Playgroud)
我现在有以下错误:
START RequestId: 6abd7ef6-b9de-11e5-8aee-918ac0a06113 Version: $LATEST
running make movie
Error importing numpy: you should not try to import numpy from
its source directory; please exit the numpy source tree, and relaunch
your python intepreter from there.: ImportError
Traceback (most recent call last):
File "/var/task/process_movie.py", line 3, in make_movie
import numpy
File "/var/task/numpy/__init__.py", line 127, in <module>
raise ImportError(msg)
ImportError: Error importing numpy: you should not try to import numpy from
its source directory; please exit the numpy source tree, and relaunch
your python intepreter from there.
END RequestId: 6abd7ef6-b9de-11e5-8aee-918ac0a06113
REPORT RequestId: 6abd7ef6-b9de-11e5-8aee-918ac0a06113 Duration: 105.95 ms Billed Duration: 200 ms Memory Size: 1536 MB Max Memory Used: 14 MB
Run Code Online (Sandbox Code Playgroud)
Att*_*nyi 56
我也在关注你的第一个链接并设法以这种方式在Lambda函数中导入numpy和pandas(在Windows上):
尝试使用您使用的相同命令和亚马逊文章推荐的命令:
sudo yum -y update
sudo yum -y upgrade
sudo yum -y groupinstall "Development Tools"
sudo yum -y install blas --enablerepo=epel
sudo yum -y install lapack --enablerepo=epel
sudo yum -y install Cython --enablerepo=epel
sudo yum install python27-devel python27-pip gcc
Run Code Online (Sandbox Code Playgroud)创建虚拟环境:
virtualenv ~/env
source ~/env/bin/activate
Run Code Online (Sandbox Code Playgroud)安装包:
sudo ~/env/bin/pip2.7 install numpy
sudo ~/env/bin/pip2.7 install pandas
Run Code Online (Sandbox Code Playgroud)然后,使用WinSCP,我登录并下载/home/ec2-user/env/lib/python2.7/dist-packages
了/home/ec2-user/env/lib64/python2.7/site-packages
来自EC2实例的所有内容(除了_markerlib,pip*,pkg_resources,setuptools*和easyinstall*).
我把所有这些文件夹和文件放在一个zip中,以及包含Lambda函数的.py文件. 复制的所有文件的插图
因为这个.zip大于10 MB,所以我创建了一个S3存储桶来存储文件.我从那里复制了文件的链接并粘贴在Lambda函数的"从Amazon S3上传一个.ZIP".
可以关闭 EC2实例,不再需要它.
有了这个,我可以导入numpy和pandas.我不熟悉moviepy,但scipy可能已经很棘手,因为Lambda 对解压缩的部署包大小限制为262 144 000字节.我害怕numpy和scipy已经结束了.
rou*_*uk1 27
在这个帖子的所有帖子的帮助下,这里是记录的解决方案:
要实现这一点,您需要:
启动一个EC2
至少有2GO RAM 的实例(能够编译NumPy
&SciPy
)
安装所需的依赖项
sudo yum -y update
sudo yum -y upgrade
sudo yum -y groupinstall "Development Tools"
sudo yum -y install blas --enablerepo=epel
sudo yum -y install lapack --enablerepo=epel
sudo yum -y install Cython --enablerepo=epel
sudo yum install python27-devel python27-pip gcc
virtualenv ~/env
source ~/env/bin/activate
pip install scipy
pip install numpy
pip install moviepy
Run Code Online (Sandbox Code Playgroud)将以下目录中的所有内容(除了_markerlib,pip*,pkg_resources,setuptools*和easyinstall*)复制到您的语言环境机器中stack
:
home/ec2-user/env/lib/python2.7/dist-packages
home/ec2-user/env/lib64/python2.7/dist-packages
从您的EC2
实例获取所有必需的共享库:
libatlas.so.3
libf77blas.so.3
liblapack.so.3
libptf77blas.so.3
libcblas.so.3
libgfortran.so.3
libptcblas.so.3
libquadmath.so.0
将它们放在lib
文件夹的子stack
文件夹中
imageio
是一个依赖moviepy
,你需要下载其依赖的一些二进制版本:libfreeimage
和ffmpeg
; 他们可以在这里找到.将它们放在堆栈文件夹的根目录并重命名libfreeimage-3.16.0-linux64.so
为libfreeimage.so
您现在应该有一个stack
文件夹包含:
lib
子文件夹中的所有共享库ffmpeg
根在二进制libfreeimage.so
在根压缩此文件夹: zip -r9 stack.zip . -x ".*" -x "*/.*"
使用以下lambda_function.py
作为您的入口点lambda
from __future__ import print_function
import os
import subprocess
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
LIB_DIR = os.path.join(SCRIPT_DIR, 'lib')
FFMPEG_BINARY = os.path.join(SCRIPT_DIR, 'ffmpeg')
def lambda_handler(event, context):
command = 'LD_LIBRARY_PATH={} IMAGEIO_FFMPEG_EXE={} python movie_maker.py'.format(
LIB_DIR,
FFMPEG_BINARY,
)
try:
output = subprocess.check_output(command, shell=True)
print(output)
except subprocess.CalledProcessError as e:
print(e.output)
Run Code Online (Sandbox Code Playgroud)写一个movie_maker.py
依赖于脚本moviepy
,numpy
...
将这些脚本添加到stack.zip文件中 zip -r9 lambda.zip *.py
上传zip S3
并将其用作您的来源lambda
你也可以在stack.zip
这里下载.
这里的帖子帮助我找到一种方法来静态编译NumPy,其中包含可以包含在AWS Lambda Deployment包中的库文件.此解决方案不依赖于@ rouk1解决方案中的LD_LIBRARY_PATH值.
编译的NumPy库可以从https://github.com/vitolimandibhrata/aws-lambda-numpy下载
以下是自定义编译NumPy的步骤
使用AWS Linux准备新的AWS EC实例.
安装编译器依赖项
sudo yum -y install python-devel
sudo yum -y install gcc-c++
sudo yum -y install gcc-gfortran
sudo yum -y install libgfortran
Run Code Online (Sandbox Code Playgroud)
安装NumPy依赖项
sudo yum -y install blas
sudo yum -y install lapack
sudo yum -y install atlas-sse3-devel
Run Code Online (Sandbox Code Playgroud)
创建/ var/task/lib以包含运行时库
mkdir -p /var/task/lib
Run Code Online (Sandbox Code Playgroud)
/ var/task是您的代码将驻留在AWS Lambda中的根目录,因此我们需要在一个众所周知的文件夹中静态链接所需的库文件,在本例中为/ var/task/lib
将以下库文件复制到/ var/task/lib
cp /usr/lib64/atlas-sse3/liblapack.so.3 /var/task/lib/.
cp /usr/lib64/atlas-sse3/libptf77blas.so.3 /var/task/lib/.
cp /usr/lib64/atlas-sse3/libf77blas.so.3 /var/task/lib/.
cp /usr/lib64/atlas-sse3/libptcblas.so.3 /var/task/lib/.
cp /usr/lib64/atlas-sse3/libcblas.so.3 /var/task/lib/.
cp /usr/lib64/atlas-sse3/libatlas.so.3 /var/task/lib/.
cp /usr/lib64/atlas-sse3/libptf77blas.so.3 /var/task/lib/.
cp /usr/lib64/libgfortran.so.3 /var/task/lib/.
cp /usr/lib64/libquadmath.so.0 /var/task/lib/.
Run Code Online (Sandbox Code Playgroud)
从http://sourceforge.net/projects/numpy/files/NumPy/获取最新的numpy源代码
转到numpy源代码文件夹,例如numpy-1.10.4使用以下条目创建site.cfg文件
[atlas]
libraries=lapack,f77blas,cblas,atlas
search_static_first=true
runtime_library_dirs = /var/task/lib
extra_link_args = -lgfortran -lquadmath
Run Code Online (Sandbox Code Playgroud)
-lgfortran -lquadmath标志是将gfortran和quadmath库与runtime_library_dirs中定义的文件静态链接所必需的
建立NumPy
python setup.py build
Run Code Online (Sandbox Code Playgroud)
安装NumPy
python setup.py install
Run Code Online (Sandbox Code Playgroud)
检查库是否链接到/ var/task/lib中的文件
ldd $PYTHON_HOME/lib64/python2.7/site-packages/numpy/linalg/lapack_lite.so
Run Code Online (Sandbox Code Playgroud)
你应该看到
linux-vdso.so.1 => (0x00007ffe0dd2d000)
liblapack.so.3 => /var/task/lib/liblapack.so.3 (0x00007ffad6be5000)
libptf77blas.so.3 => /var/task/lib/libptf77blas.so.3 (0x00007ffad69c7000)
libptcblas.so.3 => /var/task/lib/libptcblas.so.3 (0x00007ffad67a7000)
libatlas.so.3 => /var/task/lib/libatlas.so.3 (0x00007ffad6174000)
libf77blas.so.3 => /var/task/lib/libf77blas.so.3 (0x00007ffad5f56000)
libcblas.so.3 => /var/task/lib/libcblas.so.3 (0x00007ffad5d36000)
libpython2.7.so.1.0 => /usr/lib64/libpython2.7.so.1.0 (0x00007ffad596d000)
libgfortran.so.3 => /var/task/lib/libgfortran.so.3 (0x00007ffad5654000)
libm.so.6 => /lib64/libm.so.6 (0x00007ffad5352000)
libquadmath.so.0 => /var/task/lib/libquadmath.so.0 (0x00007ffad5117000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007ffad4f00000)
libc.so.6 => /lib64/libc.so.6 (0x00007ffad4b3e000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007ffad4922000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007ffad471d000)
libutil.so.1 => /lib64/libutil.so.1 (0x00007ffad451a000)
/lib64/ld-linux-x86-64.so.2 (0x000055cfc3ab8000)
Run Code Online (Sandbox Code Playgroud)
截至2017年,NumPy和SciPy拥有适用于Lambda的轮子(包装包括预编译libgfortran
和libopenblas
).据我所知,MoviePy是一个纯Python模块,所以基本上你可以这样做:
pip2 install -t lambda moviepy scipy
Run Code Online (Sandbox Code Playgroud)
然后将处理程序复制到lambda
目录中并压缩它.除此之外,您最有可能超过50/250 MB的大小限制.有几件事可以帮助:
这是一个自动执行上述要点的示例脚本.
另一种非常简单的方法是使用LambCI用于模仿Lambda的令人敬畏的docker容器来构建:https://github.com/lambci/docker-lambda
该lambci/lambda:build
容器类似于AWS Lambda,增加了大部分完整的构建环境.要在其中启动shell会话:
docker run -v "$PWD":/var/task -it lambci/lambda:build bash
Run Code Online (Sandbox Code Playgroud)
会议内部:
export share=/var/task
easy_install pip
pip install -t $share numpy
Run Code Online (Sandbox Code Playgroud)
或者,使用virtualenv:
export share=/var/task
export PS1="[\u@\h:\w]\$ " # required by virtualenv
easy_install pip
pip install virtualenv
# ... make the venv, install numpy, and copy it to $share
Run Code Online (Sandbox Code Playgroud)
稍后您可以使用主lambci/lambda容器来测试您的构建.