Dem*_*dge 5 python numpy tensorflow
我想将一些由另一个网络训练的权重转移到TensorFlow,权重存储在一个向量中,如下所示:
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
通过使用numpy,我可以将它重塑为两个3乘3的过滤器,如下所示:
1 2 3 9 10 11
3 4 5 12 13 14
6 7 8 15 16 17
Run Code Online (Sandbox Code Playgroud)
因此,我的过滤器的形状是(1,2,3,3)
.但是,在TensorFlow中,过滤器的形状为(3,3,2,1)
:
tf_weights = tf.Variable(tf.random_normal([3,3,2,1]))
Run Code Online (Sandbox Code Playgroud)
在将tf_weights重塑为预期形状后,重量变得混乱,我无法获得预期的卷积结果.
具体来说,当图像或滤镜的形状是[数字,通道,大小,大小]时,我写了一个卷积函数,它给出了正确的答案,但它太慢了:
def convol(images,weights,biases,stride):
"""
Args:
images:input images or features, 4-D tensor
weights:weights, 4-D tensor
biases:biases, 1-D tensor
stride:stride, a float number
Returns:
conv_feature: convolved feature map
"""
image_num = images.shape[0] #the number of input images or feature maps
channel = images.shape[1] #channels of an image,images's shape should be like [n,c,h,w]
weight_num = weights.shape[0] #number of weights, weights' shape should be like [n,c,size,size]
ksize = weights.shape[2]
h = images.shape[2]
w = images.shape[3]
out_h = (h+np.floor(ksize/2)*2-ksize)/2+1
out_w = out_h
conv_features = np.zeros([image_num,weight_num,out_h,out_w])
for i in range(image_num):
image = images[i,...,...,...]
for j in range(weight_num):
sum_convol_feature = np.zeros([out_h,out_w])
for c in range(channel):
#extract a single channel image
channel_image = image[c,...,...]
#pad the image
padded_image = im_pad(channel_image,ksize/2)
#transform this image to a vector
im_col = im2col(padded_image,ksize,stride)
weight = weights[j,c,...,...]
weight_col = np.reshape(weight,[-1])
mul = np.dot(im_col,weight_col)
convol_feature = np.reshape(mul,[out_h,out_w])
sum_convol_feature = sum_convol_feature + convol_feature
conv_features[i,j,...,...] = sum_convol_feature + biases[j]
return conv_features
Run Code Online (Sandbox Code Playgroud)
相反,通过使用tensorflow的conv2d,如下所示:
img = np.zeros([1,3,224,224])
img = img - 1
img = np.rollaxis(img, 1, 4)
weight_array = googleNet.layers[1].weights
weight_array = np.reshape(weight_array,[64,3,7,7])
biases_array = googleNet.layers[1].biases
tf_weight = tf.Variable(weight_array)
tf_img = tf.Variable(img)
tf_img = tf.cast(tf_img,tf.float32)
tf_biases = tf.Variable(biases_array)
conv_feature = tf.nn.bias_add(tf.nn.conv2d(tf_img,tf_weight,strides=[1,2,2,1],padding='SAME'),tf_biases)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
feautre = sess.run(conv_feature)
Run Code Online (Sandbox Code Playgroud)
我得到的功能图是错误的.
不要用np.reshape
.它可能搞乱你的价值观的顺序.
np.rollaxis
改为使用:
>>> a = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18])
>>> a = a.reshape((1,2,3,3))
>>> a
array([[[[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9]],
[[10, 11, 12],
[13, 14, 15],
[16, 17, 18]]]])
>>> b = np.rollaxis(a, 1, 4)
>>> b.shape
(1, 3, 3, 2)
>>> b = np.rollaxis(b, 0, 4)
>>> b.shape
(3, 3, 2, 1)
Run Code Online (Sandbox Code Playgroud)
请注意,尺寸为3的两个轴的顺序没有改变.如果我要对其进行标记,这两个rollaxis
操作引起的形状改变为(1,2,3 1,3 2) - >(1,3 1,3 2,2) - >(3 1,3 2,2 ,1).你的最终数组如下:
>>> b
array([[[[ 1],
[10]],
[[ 2],
[11]],
[[ 3],
[12]]],
[[[ 4],
[13]],
[[ 5],
[14]],
[[ 6],
[15]]],
[[[ 7],
[16]],
[[ 8],
[17]],
[[ 9],
[18]]]])
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1323 次 |
最近记录: |