sho*_*qie 12 python recursion dictionary
一个简单的递归因子方法非常有效:
def fact(n):
if n == 0:
return 1
return n * fact(n-1)
Run Code Online (Sandbox Code Playgroud)
但是我想尝试一下并使用一个dict
代替.从逻辑上讲,这应该可行,但是一堆打印语句告诉我n
,不是停止,而是0
向下滑过负数,直到达到最大递归深度:
def recursive_fact(n):
lookup = {0: 1}
return lookup.get(n, n*recursive_fact(n-1))
Run Code Online (Sandbox Code Playgroud)
这是为什么?
the*_*eye 17
Python不会懒惰地评估参数.
dict.get
在调用之前,还将评估传递给调用的默认值dict.get
.
因此,在您的情况下,默认值具有递归调用,并且由于您的条件永远不会满足,因此它会执行无限递归.
您可以使用此程序进行确认
>>> def getter():
... print("getter called")
... return 0
...
>>> {0: 1}.get(0, getter())
getter called
1
Run Code Online (Sandbox Code Playgroud)
即使密钥0
存在于字典中,因为getter
在实际生成之前,也会调用传递给Python中的函数的所有参数,也会调用它们dict.get
.
如果您想要做的就是在已经评估了值时避免多次递归计算,那么functools.lru_cache
如果您使用的是Python 3.2+,则使用
>>> @functools.lru_cache()
... def fact(n):
... print("fact called with {}".format(n))
... if n == 0:
... return 1
... return n * fact(n-1)
...
>>> fact(3)
fact called with 3
fact called with 2
fact called with 1
fact called with 0
6
>>> fact(4)
fact called with 4
24
Run Code Online (Sandbox Code Playgroud)
此装饰器只是缓存传递的参数的结果,如果再次进行相同的调用,它将只返回缓存中的值.
如果要修复自定义缓存功能,则需要look_up
在函数外部定义,以便在调用函数时不会创建它.
>>> look_up = {0: 1}
>>> def fact(n):
... if n not in look_up:
... print("recursing when n is {}".format(n))
... look_up[n] = n * fact(n - 1)
... return look_up[n]
...
>>> fact(3)
recursing when n is 3
recursing when n is 2
recursing when n is 1
6
>>> fact(4)
recursing when n is 4
24
>>> fact(4)
24
Run Code Online (Sandbox Code Playgroud)
否则,您可以使用默认参数,如下所示
>>> def fact(n, look_up={0: 1}):
... if n not in look_up:
... print("recursing when n is {}".format(n))
... look_up[n] = n * fact(n - 1)
... return look_up[n]
Run Code Online (Sandbox Code Playgroud)