我喜欢从贝塞尔曲线中得到一些点。我发现
位置很容易。首先,计算混合函数。这些控制您的控制点在曲线上的“效果”。
B0_t = (1-t)^3
B1_t = 3 * t * (1-t)^2
B2_t = 3 * t^2 * (1-t)
B3_t = t^3
Run Code Online (Sandbox Code Playgroud)
请注意当 t 为 0 时 B0_t 是 1(并且其他所有内容都为零)。此外,当 t 为 1 时 B3_t 为 1(其他所有内容均为零)。所以曲线从 (ax, ay) 开始,到 (dx, dy) 结束。任何中间点 (px_t, py_t) 将由以下给出(将 t 从 0 变化到 1,在循环内以小增量):
px_t = (B0_t * ax) + (B1_t * bx) + (B2_t * cx) + (B3_t * dx)
py_t = (B0_t * ay) + (B1_t * by) + (B2_t * cy) + (B3_t * dy)
Run Code Online (Sandbox Code Playgroud)
我的代码
var ax = 100, ay = 250;
var bx = 150, by = 100;
var cx = 350, cy = 100;
var dx = 400, dy = 250;
ctx.lineWidth = 1;
ctx.strokeStyle = "#333";
ctx.beginPath();
ctx.moveTo(ax, ay);
ctx.bezierCurveTo(bx, by, cx, cy, dx, dy);
ctx.stroke();
var t = 0
var B0_t = (1 - t) ^ 3
var B1_t = 3 * t * (1 - t) ^ 2
var B2_t = 3 * t ^ 2 * (1 - t)
var B3_t = t ^ 3
// override manually *Notice* above
//This is work first and laste point in curve
// B0_t = 1; B1_t = 0; B2_t = 0; B3_t = 0; t = 0;
// B0_t = 0; B1_t = 0; B2_t = 0; B3_t = 1; t = 1;
var px_t = (B0_t * ax) + (B1_t * bx) + (B2_t * cx) + (B3_t * dx)
var py_t = (B0_t * ay) + (B1_t * by) + (B2_t * cy) + (B3_t * dy)
// doesnt work
var t = 0
var B0_t = (1 - t) ^ 3 //*Notice* above should be 1
//Debug (1 - t) ^ 3 = 2 ??
var B1_t = 3 * t * (1 - t) ^ 2 //*Notice* above should be 0
//Debug 3 * t * (1 - t) ^ 2 = 2 ??
var B2_t = 3 * t ^ 2 * (1 - t)//*Notice* above should be 0
//Debug 3 * t ^ 2 * (1 - t) =2 ??
var B3_t = t ^ 3//*Notice* above should be 0 but its 2
//Debug t ^ 3 = 3 ??
var px_t = (B0_t * ax) + (B1_t * bx) + (B2_t * cx) + (B3_t * dx)
var py_t = (B0_t * ay) + (B1_t * by) + (B2_t * cy) + (B3_t * dy)
Run Code Online (Sandbox Code Playgroud)
感谢任何帮助谢谢
如何沿贝塞尔曲线找到像素
这组函数将[x,y]在T三次贝塞尔曲线上找到一个间隔点,其中0<=T<=1。
简单来说:它沿着三次贝塞尔曲线从开始到结束绘制点。
// Given the 4 control points on a Bezier curve
// get x,y at interval T along the curve (0<=T<=1)
// The curve starts when T==0 and ends when T==1
function getCubicBezierXYatPercent(startPt, controlPt1, controlPt2, endPt, percent) {
var x = CubicN(percent, startPt.x, controlPt1.x, controlPt2.x, endPt.x);
var y = CubicN(percent, startPt.y, controlPt1.y, controlPt2.y, endPt.y);
return ({
x: x,
y: y
});
}
// cubic helper formula
function CubicN(T, a, b, c, d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T + (3 * b + T * (-6 * b + b * 3 * T)) * T + (c * 3 - c * 3 * T) * t2 + d * t3;
}
Run Code Online (Sandbox Code Playgroud)
您可以通过向绘图函数发送大量介于 0.00 和 1.00 之间的 T 值来获取曲线上的点。
示例代码和演示:
// Given the 4 control points on a Bezier curve
// get x,y at interval T along the curve (0<=T<=1)
// The curve starts when T==0 and ends when T==1
function getCubicBezierXYatPercent(startPt, controlPt1, controlPt2, endPt, percent) {
var x = CubicN(percent, startPt.x, controlPt1.x, controlPt2.x, endPt.x);
var y = CubicN(percent, startPt.y, controlPt1.y, controlPt2.y, endPt.y);
return ({
x: x,
y: y
});
}
// cubic helper formula
function CubicN(T, a, b, c, d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T + (3 * b + T * (-6 * b + b * 3 * T)) * T + (c * 3 - c * 3 * T) * t2 + d * t3;
}
Run Code Online (Sandbox Code Playgroud)
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var cw=canvas.width;
var ch=canvas.height;
var cBez1=[{x:250,y: 120},{x:290,y:-40},{x:300,y:200},{x:400,y:150}]
drawBez(cBez1);
var cPoints=findCBezPoints(cBez1);
drawPlots(cPoints);
function findCBezPoints(b){
var startPt=b[0];
var controlPt1=b[1];
var controlPt2=b[2];
var endPt=b[3];
var pts=[b[0]];
var lastPt=b[0];
var tests=5000;
for(var t=0;t<=tests;t++){
// calc another point along the curve
var pt=getCubicBezierXYatT(b[0],b[1],b[2],b[3], t/tests);
// add the pt if it's not already in the pts[] array
var dx=pt.x-lastPt.x;
var dy=pt.y-lastPt.y;
var d=Math.sqrt(dx*dx+dy*dy);
var dInt=parseInt(d);
if(dInt>0 || t==tests){
lastPt=pt;
pts.push(pt);
}
}
return(pts);
}
// Given the 4 control points on a Bezier curve
// Get x,y at interval T along the curve (0<=T<=1)
// The curve starts when T==0 and ends when T==1
function getCubicBezierXYatT(startPt, controlPt1, controlPt2, endPt, T) {
var x = CubicN(T, startPt.x, controlPt1.x, controlPt2.x, endPt.x);
var y = CubicN(T, startPt.y, controlPt1.y, controlPt2.y, endPt.y);
return ({
x: x,
y: y
});
}
// cubic helper formula
function CubicN(T, a, b, c, d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T + (3 * b + T * (-6 * b + b * 3 * T)) * T + (c * 3 - c * 3 * T) * t2 + d * t3;
}
function drawPlots(pts){
ctx.fillStyle='red';
// don't draw the last dot b/ its radius will display past the curve
for(var i=0;i<pts.length-1;i++){
ctx.beginPath();
ctx.arc(pts[i].x,pts[i].y,1,0,Math.PI*2);
ctx.fill();
}
}
function drawBez(b){
ctx.lineWidth=7;
ctx.beginPath();
ctx.moveTo(b[0].x,b[0].y);
ctx.bezierCurveTo(b[1].x,b[1].y, b[2].x,b[2].y, b[3].x,b[3].y);
ctx.stroke();
}Run Code Online (Sandbox Code Playgroud)
body{ background-color: ivory; }
#canvas{border:1px solid red; margin:0 auto; }Run Code Online (Sandbox Code Playgroud)