这是head一个大数据框的
head(Hdata_soil)
X_id timestamp address rssi batt_v soil_temp_1 soil_temp_2 soil_temp_3 soil_moisture_1
1 565846060dd8e408e3817c58 2015-11-27 12:01:10 A8 -65 NA NA NA NA NA
2 565846070dd8e408e3817c59 2015-11-27 12:01:11 A8 NA NA 9.73 -273.15 14.63 647
3 565846cf0dd8e408e3817caf 2015-11-27 12:04:31 A7 -64 NA NA NA NA NA
4 565846cf0dd8e408e3817cb0 2015-11-27 12:04:31 A7 NA NA 8.56 9.46 9.64 660
5 565847650dd8e408e3817cf5 2015-11-27 12:07:01 A8 -64 NA NA NA NA NA
6 565847660dd8e408e3817cf6 2015-11-27 12:07:02 A8 NA NA 9.82 -273.15 14.29 643
Run Code Online (Sandbox Code Playgroud)
可以从dropbox访问完整的数据集
正如你可以看到有每个连续的2个观察值address与timestamps大约1秒间隔。变量在这 2 个观察值之间拆分。我怎样才能将它们合并成一行,保留第一行timestamp?
确保这仅发生在来自同一个address.
如果有人能就要使用的包/功能向我指出正确的方向,我将不胜感激。
查看下面的代码应该可以满足您的需求。首先,时间戳列被转换为“POSIXlt”类的对象,它允许确定单个观察之间的时间差。然后,我使用foreach并行循环所有行,并跳过在上一次迭代期间已合并到另一个中的所有记录(保存在向量“used”中)。which与 结合difftime可以识别连续的观察结果(例如,距当前处理的观察结果 5 秒内)。最后(并且仅当当前观察的“地址”存在于候选记录中时),行才会被合并,用连续观察中的值替换当前处理的行中的缺失值。
## load 'foreach' package
library(foreach)
## import and reformat data
Hdata_soil <- read.csv("Hdata_soil.csv", header = TRUE,
stringsAsFactors = FALSE)
## reformat timestamps
timestamps <- strptime(Hdata_soil$timestamp, format = "%Y-%m-%d %H:%M:%S")
## vector with information about merged lines
used <- integer()
dat_out <- foreach(i = 1:length(timestamps), .combine = "rbind") %do% {
## skip current iteration if line has already been merged into another line
if (i %in% used)
return(NULL)
## identify consecutive observation (<5s)
x <- timestamps[i]
y <- timestamps[(i+1):length(timestamps)]
# (subset same or consecutive days to reduce
# computation time of 'difftime')
id_day <- which(as.Date(y) == as.Date(x) |
as.Date(y) == (as.Date(x) + 1))
y <- y[id_day]
# (subset records within 5s from current observation)
id_sec <- which(difftime(y, x, units = "secs") < 5)
id <- id_day[id_sec]
## if consecutive observation(s) exist(s) and include address of
## current observation, perform merge
if (length(id) > 0 &
any(Hdata_soil[i+id, "address"] == Hdata_soil[i, "address"])) {
for (j in 1:length(id)) {
Hdata_soil_x <- data.frame(Hdata_soil[i, ])
Hdata_soil_y <- data.frame(Hdata_soil[i+id[j], ])
# overwrite all missing values in current line with values
# from consecutive line
Hdata_soil_x[which(is.na(Hdata_soil_x) & !is.na(Hdata_soil_y))] <-
Hdata_soil_y[which(is.na(Hdata_soil_x) & !is.na(Hdata_soil_y))]
# update information about merged lines
used <- c(used, i, i+id[j])
}
# return merged line
return(Hdata_soil_x)
## else return current line as is
} else {
used <- c(used, i)
return(data.frame(Hdata_soil[i, ]))
}
}
Run Code Online (Sandbox Code Playgroud)
但是,该代码需要很长时间才能执行,这似乎与difftime.
> user system elapsed
> 2209.504 99.389 2311.996
Run Code Online (Sandbox Code Playgroud)