我正在关注软件基金会这本书,我在名为"Imp"的章节.
作者公开了一种小语言,如下所示:
Inductive aexp : Type :=
| ANum : nat -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp.
Run Code Online (Sandbox Code Playgroud)
以下是评估这些表达式的函数:
Fixpoint aeval (a : aexp) : nat :=
match a with
| ANum n ? n
| APlus a1 a2 ? (aeval a1) + (aeval a2)
| AMinus a1 a2 ? (aeval a1) - (aeval a2)
| AMult a1 a2 ? (aeval a1) × (aeval a2)
end.
Run Code Online (Sandbox Code Playgroud)
练习是创建一个优化评估的功能.例如 :
APlus a (ANum 0) --> a
Run Code Online (Sandbox Code Playgroud)
这里有我的优化功能:
Fixpoint optimizer_a (a:aexp) :aexp :=
match a with
| ANum n => ANum n
| APlus (ANum 0) e2 => optimizer_a e2
| APlus e1 (ANum 0) => optimizer_a e1
| APlus e1 e2 => APlus (optimizer_a e1) (optimizer_a e2)
| AMinus e1 (ANum 0) => optimizer_a e1
| AMinus e1 e2 => AMinus (optimizer_a e1) (optimizer_a e2)
| AMult (ANum 1) e2 => optimizer_a e2
| AMult e1 (ANum 1) => optimizer_a e1
| AMult e1 e2 => AMult (optimizer_a e1) (optimizer_a e2)
end.
Run Code Online (Sandbox Code Playgroud)
而现在,我会证明优化功能是合理的:
Theorem optimizer_a_sound : forall a, aeval (optimizer_a a) = aeval a.
Run Code Online (Sandbox Code Playgroud)
这个证明非常困难.所以我尝试用一些引理来分解证明.
这是一个引理:
Lemma optimizer_a_plus_sound : forall a b, aeval (optimizer_a (APlus a b)) = aeval (APlus (optimizer_a a) (optimizer_a b)).
Run Code Online (Sandbox Code Playgroud)
我有证据,但很无聊.我在a上进行归纳然后,对于每种情况,我都会破坏b并破坏exp以处理b为0时的情况.
我需要这样做,因为
n+0 = n
Run Code Online (Sandbox Code Playgroud)
不会自动减少,我们需要一个plus_0_r定理.
现在,我想知道,我怎么能用Coq建立一个更好的证据,以避免在证明过程中出现一些无聊的重复.
以下是我对这个引理的证明:
我想我应该使用"Hint Rewrite plus_0_r",但我不知道怎么做.
顺便说一句,我也有兴趣知道一些提示,以显示初始定理(我的优化函数的响度).
如果你使用上面的技术,你可以定义自己的战术,所以你不必输入那么多.由于证据很短,你可以没有引理.(我称之为dcadestruct-congruence-auto 的战术.)
较短的证据不具有可读性,但它本质上是:考虑变量的情况.
Lemma ANum0_dec: forall a, {a = ANum 0} + { a <> ANum 0}.
destruct a; try destruct n; try (right; discriminate); left; auto.
Qed.
Require Import Arith.
Ltac dca v := destruct v; try congruence; auto.
Lemma optimizer_a_plus_sound :
forall a b,
aeval (optimizer_a (APlus a b)) = aeval (APlus (optimizer_a a) (optimizer_a b)).
Proof.
intros a b;
destruct (ANum0_dec a), (ANum0_dec b).
- dca a; dca n.
- dca a; dca n0.
- dca b; dca n0; dca a; simpl; auto with arith; dca n0.
- dca a; dca b; dca n1; dca n2.
Qed.
Run Code Online (Sandbox Code Playgroud)
然后使用它
Theorem optimizer_a_sound : forall a, aeval (optimizer_a a) = aeval a.
induction a.
* auto.
* rewrite optimizer_a_plus_sound; simpl; auto.
* (* ... and so on for Minus and Mult *)
Run Code Online (Sandbox Code Playgroud)
你也可以用这种紧凑的形式做完整的证明.