jdp*_*sad 15 scala apache-spark rdd
我在HDFS中有成千上万的小文件.需要处理稍小的文件子集(也是数千个),fileList包含需要处理的文件路径列表.
// fileList == list of filepaths in HDFS
var masterRDD: org.apache.spark.rdd.RDD[(String, String)] = sparkContext.emptyRDD
for (i <- 0 to fileList.size() - 1) {
val filePath = fileStatus.get(i)
val fileRDD = sparkContext.textFile(filePath)
val sampleRDD = fileRDD.filter(line => line.startsWith("#####")).map(line => (filePath, line))
masterRDD = masterRDD.union(sampleRDD)
}
masterRDD.first()
Run Code Online (Sandbox Code Playgroud)
//一旦退出循环,执行任何操作都会导致由于RDD的长谱系导致的堆栈溢出错误
Exception in thread "main" java.lang.StackOverflowError
at scala.runtime.AbstractFunction1.<init>(AbstractFunction1.scala:12)
at org.apache.spark.rdd.UnionRDD$$anonfun$1.<init>(UnionRDD.scala:66)
at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
=====================================================================
=====================================================================
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
Run Code Online (Sandbox Code Playgroud)
zer*_*323 31
通常,您可以使用检查点来打破长谱系.一些或多或少类似的应该工作:
import org.apache.spark.rdd.RDD
import scala.reflect.ClassTag
val checkpointInterval: Int = ???
def loadAndFilter(path: String) = sc.textFile(path)
.filter(_.startsWith("#####"))
.map((path, _))
def mergeWithLocalCheckpoint[T: ClassTag](interval: Int)
(acc: RDD[T], xi: (RDD[T], Int)) = {
if(xi._2 % interval == 0 & xi._2 > 0) xi._1.union(acc).localCheckpoint
else xi._1.union(acc)
}
val zero: RDD[(String, String)] = sc.emptyRDD[(String, String)]
fileList.map(loadAndFilter).zipWithIndex
.foldLeft(zero)(mergeWithLocalCheckpoint(checkpointInterval))
Run Code Online (Sandbox Code Playgroud)
在这种特殊情况下,一个更简单的解决方案应该是使用SparkContext.union
方法:
val masterRDD = sc.union(
fileList.map(path => sc.textFile(path)
.filter(_.startsWith("#####"))
.map((path, _)))
)
Run Code Online (Sandbox Code Playgroud)
当您查看loop /生成的DAG时,这些方法之间的区别应该是显而易见的reduce
:
和一个union
:
当然,如果文件很小,你可以结合wholeTextFiles
使用flatMap
和读取所有文件一次:
sc.wholeTextFiles(fileList.mkString(","))
.flatMap{case (path, text) =>
text.split("\n").filter(_.startsWith("#####")).map((path, _))}
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
4954 次 |
最近记录: |